【題目】某地煤氣公司規(guī)定,居民每個月使用的煤氣費由基本月租費、保險費和超額費組成.每個月的保險費為3元,當(dāng)每個月使用的煤氣量不超過am3時,只繳納基本月租費c元;如果超過這個使用量,超出的部分按b/m3計費.

1)請寫出每個月的煤氣費y(元)關(guān)于該月使用的煤氣量xm3)的函數(shù)解析式;

2)如果某個居民79月份使用煤氣與收費情況如下表,請求出a,bc,并畫出函數(shù)圖象;

月份

煤氣使用量/m3

煤氣費/

7

4

4

8

10

10

9

16

19

其中,僅7月份煤氣使用量未超過am3

【答案】12,圖像見解析.

【解析】

1)根據(jù)題意列方程.

2)根據(jù)表格中給出的數(shù)據(jù),其中8、9月份的情況符合第二段解析式,求解參數(shù).

1)根據(jù)題意:當(dāng)時,

當(dāng)時,

即解析式為

2)因為僅7月份煤氣使用量未超過am3

8、9月份使用量超過am3

解得

圖像如下圖所示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.

(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;

(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率,分別為左、右焦點,過的直線交橢圓,兩點,且的周長為8.

(1)求橢圓的方程;

(2)設(shè)過點的直線交橢圓于不同兩點,.為橢圓上一點,且滿足為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于AB兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)有無數(shù)個零點,則實數(shù)的最大值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點B沿棱柱側(cè)面(經(jīng)過棱AA1)到達頂點C1,與AA1的交點記為M.求:

(1)三棱柱側(cè)面展開圖的對角線長;

(2)從B經(jīng)M到C1的最短路線長及此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,分別是的中點.

(1)證明:平面平面;

(2)求三棱錐的高.

查看答案和解析>>

同步練習(xí)冊答案