【題目】甲乙兩位同學(xué)整理了某學(xué)科高三以來9次考試的成績(甲缺席了其中3次考試,只有6次成績),得到如下莖葉圖.
(1)若用分層抽樣的方法從兩人的15個(gè)成績選取5個(gè)評估,應(yīng)選取甲的幾次成績?若分層抽樣時(shí)對甲的成績采用隨機(jī)抽取,求選取到的甲的成績至少有一次高于85分的概率;
(2)試通過表中的所有數(shù)據(jù),從平均水平和穩(wěn)定性來評判兩位同學(xué)該學(xué)科的考試成績.
【答案】(1)(2)乙的平均分比甲更高,穩(wěn)定性也更好,綜合認(rèn)為,乙的更好。
【解析】
(1)按照比例,應(yīng)該取甲的2次成績.設(shè)甲的6個(gè)成績由高到低為A,B,C,D,E,F,高于85分的是A,B兩個(gè),利用列舉法能求出選取到的甲的成績至少有一次高于85分的概率.
(2)先計(jì)算出甲的均值為81分,乙的均值為82分,由此求出甲的方差和乙的方差,從而得到乙的平均分比甲更高,穩(wěn)定性也更好,綜合認(rèn)為乙的更好.
(1)因?yàn)榧滓铱荚嚧螖?shù)比例為,所以抽取5個(gè)成績,應(yīng)該取甲的2次成績;
設(shè)甲的6個(gè)成績由高到低為,,,,,,高于85分的是,兩個(gè),
則取法有,,,,,,,,,,,,,,共15種,
其中至少有一次高于85分的有,,,,,,,,共9種,概率為.
(2)甲的均值為分,
乙的均值為分,
所以甲的方差為,
乙的方差為,
所以乙的平均分比甲更高,穩(wěn)定性也更好,綜合認(rèn)為,乙的更好.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,F為橢圓C的右焦點(diǎn),A是右準(zhǔn)線與x軸的交點(diǎn),且AF=1.
(1)求橢圓C的方程;
(2)過橢圓C上頂點(diǎn)B的直線l交橢圓另一點(diǎn)D,交x軸于點(diǎn)M,若,求直線l的方程;
(3)設(shè)點(diǎn),過點(diǎn)F且斜率不為零的直線m與橢圓C交于S,T兩點(diǎn),直線TQ與直線x=2交于點(diǎn)S1,試問是否為定值?若是,求出這個(gè)定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P(,1),Q(cosx,sinx),O為坐標(biāo)原點(diǎn),函數(shù)f(x).
(1)求f(x)的解析式及最小正周期;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為,求AB+AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:在桌面上,用母球擊打目標(biāo)球,使目標(biāo)球運(yùn)動(dòng),球的位置是指球心的位置,我們說球 A 是指該球的球心點(diǎn) A.兩球碰撞后,目標(biāo)球在兩球的球心所確定的直線上運(yùn)動(dòng),目標(biāo)球的運(yùn)動(dòng)方向是指目標(biāo)球被母球擊打時(shí),母球球心所指向目標(biāo)球球心的方向.所有的球都簡化為平面上半徑為 1 的圓,且母球與目標(biāo)球有公共點(diǎn)時(shí),目標(biāo)球就開始運(yùn)動(dòng),在桌面上建立平面直角坐標(biāo)系,解決下列問題:
(1) 如圖,設(shè)母球 A 的位置為 (0, 0),目標(biāo)球 B 的位置為 (4, 0),要使目標(biāo)球 B 向 C(8, -4) 處運(yùn)動(dòng),求母球 A 球心運(yùn)動(dòng)的直線方程;
(2)如圖,若母球 A 的位置為 (0, -2),目標(biāo)球 B 的位置為 (4, 0),能否讓母球 A 擊打目標(biāo) B 球后,使目標(biāo) B 球向 (8,-4) 處運(yùn)動(dòng)?
(3)若 A 的位置為 (0,a) 時(shí),使得母球 A 擊打目標(biāo)球 B 時(shí),目標(biāo)球 B(4, 0) 運(yùn)動(dòng)方向可以碰到目標(biāo)球 C(7,-5),求 a 的最小值(只需要寫出結(jié)果即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢又稱江城,是湖北省省會(huì)城市,被譽(yù)為中部地區(qū)中心城市,它不僅有著深厚的歷史積淀與豐富的民俗文化,更有著眾多名勝古跡與旅游景點(diǎn),每年來武漢參觀旅游的人數(shù)不勝數(shù),其中黃鶴樓與東湖被稱為兩張名片為合理配置旅游資源,現(xiàn)對已游覽黃鶴樓景點(diǎn)的游客進(jìn)行隨機(jī)問卷調(diào)查,若不游玩東湖記1分,若繼續(xù)游玩東湖記2分,每位游客選擇是否游覽東湖景點(diǎn)的概率均為,游客之間選擇意愿相互獨(dú)立.
(1)從游客中隨機(jī)抽取3人,記總得分為隨機(jī)變量,求的分布列與數(shù)學(xué)期望;
(2)(i)若從游客中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;
(ⅱ)在對所有游客進(jìn)行隨機(jī)問卷調(diào)查過程中,記已調(diào)查過的累計(jì)得分恰為分的概率為,探討與之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,,,.集合中的元素個(gè)數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).
(I)已知集合,,寫出,的值;
(II)已知集合,為等比數(shù)列,,且公比為,證明:具有性質(zhì);
(III)已知均有性質(zhì),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少張,才能使總的用料面積最小?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com