【題目】如圖,三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,AC=9,BC=12,AB=15,AA1=12,
點D是AB的中點.

(1)求證:AC⊥B1C
(2)求證:AC1∥平面CDB1

【答案】
(1)證明:∵C1C⊥平面ABC,AC面ABC,∴C1C⊥AC.

∵AC=9,BC=12,AB=15,∴AC⊥BC. 又 BC∩C1C=C,

∴AC⊥平面BCC1B1,而B1C平面BCC1B1,∴AC⊥B1C


(2)證明:連接BC1交B1C于O點,連接OD,

∵O,D分別為BC1,AB的中點,

∴OD∥AC1,又OD平面CDB1,AC1平面CDB1,

∴AC1∥平面CDB1


【解析】(1)證明C1C⊥AC,AC⊥BC,可得AC⊥平面BCC1B1 , 而B1C平面BCC1B1 , 故AC⊥B1C.(2)連接BC1交B1C于O點,由三角形中位線的性質(zhì)得OD∥AC1 , 又OD平面CDB1 , 可得AC1∥平面CDB1
【考點精析】關(guān)于本題考查的直線與平面平行的判定和直線與平面垂直的性質(zhì),需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;垂直于同一個平面的兩條直線平行才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實數(shù)x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點M,使AE∥平面FDM,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正弦曲線y=sinx上所有的點向右平移 π個單位長度,再將圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼? 倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式y(tǒng)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的左、右焦點為F1(﹣2,0),F(xiàn)2(2,0),點M(﹣2, ) 在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知斜率為k的直線l過橢圓C的右焦點F2 , 與橢圓C相交于A,B兩點.
①若|AB|= ,求直線l的方程;
②設(shè)點P( ,0),證明: 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若對于滿足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,則f( )的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)請將表中數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求當(dāng)x∈[﹣ , ]時,函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個對稱中心為( ),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)若f(lnm)+f(2lnn)≤1﹣3lnm,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.

(1)求證:直線AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案