從數(shù)列中抽出一些項,依原來的順序組成的新數(shù)列叫數(shù)列的一個子列.
(1)寫出數(shù)列的一個是等比數(shù)列的子列;
(2)設(shè)是無窮等比數(shù)列,首項,公比為.求證:當時,數(shù)列不存在
是無窮等差數(shù)列的子列.

(1);(2)證明過程詳見解析.

解析試題分析:本題主要考查等差數(shù)列、等比數(shù)列的定義、通項公式及其性質(zhì)等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、邏輯推理能力.第一問,在數(shù)列的所有項中任意抽取幾項,令其構(gòu)成等比數(shù)列即可,但是至少抽取3項;第二問,分2種情況進行討論:,利用數(shù)列的單調(diào)性,先假設(shè)存在,在推導(dǎo)過程中找出矛盾即可.
試題解析:(1)(若只寫出2,8,32三項也給滿分).           4分
(2)證明:假設(shè)能抽出一個子列為無窮等差數(shù)列,設(shè)為,通項公式為.因為
所以.
(1)當時,∈(0,1],且數(shù)列是遞減數(shù)列,
所以也為遞減數(shù)列且∈(0,1],,
,得
即存在使得,這與∈(0,1]矛盾.
(2)當時,≥1,數(shù)列是遞增數(shù)列,
所以也為遞增數(shù)列且≥1,.
因為d為正的常數(shù),且,
所以存在正整數(shù)m使得.
,則,
因為=,
所以,即,但這與矛盾,說明假設(shè)不成立.
綜上,所以數(shù)列不存在是無窮等差數(shù)列的子列.            13分
考點:等差數(shù)列、等比數(shù)列的定義、通項公式及其性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知為正項等比數(shù)列,,,為等差數(shù)列的前
項和,,.
(1)求的通項公式;
(2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}的前n項和為Sn,S7=49,a4和a8的等差中項為2.
(1)求an及Sn;
(2)證明:當n≥2時,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是公差不為零的等差數(shù)列,,且的等比中項,求:
(1)數(shù)列的通項公式;
(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列是等差數(shù)列,且成等比數(shù)列。
(1).求數(shù)列的通項公式
(2).設(shè),求前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列中的、、.
(1)求數(shù)列的通項公式;
(2)數(shù)列的前n項和為,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中這個數(shù)中取,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為
(1)當時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差不為零,其前n項和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前n項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn,則數(shù)列{bn}的最小項是第幾項,并求該項的值.

查看答案和解析>>

同步練習冊答案