從中這個數(shù)中取(,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為.
(1)當(dāng)時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
(1);(2);(3)詳見解析.
解析試題分析:(1)符合要求的遞增等差數(shù)列全部列出,即可求出的值;(2)求,即從到個數(shù)中取個,組成遞增等差數(shù)列,由等差數(shù)列的性質(zhì)知,故分別取,討論各種情況下,數(shù)列的個數(shù),如時,分別取,共可得個符合要求的數(shù)列,以此類推,即可得到其他情況的符合要求的數(shù)列的個數(shù),加起來的和即為符合要求數(shù)列的個數(shù),即得的值;(3)求證:,由(2)的求解過程可知,首先確定的范圍,即,由于只能取正整數(shù),故取的整數(shù)部分是,即,的可能取值為,計算出,利用即可證得結(jié)論.
試題解析:(1)符合要求的遞增等差數(shù)列為1,2,3;2,3,4;3,4,5;1,3,5,共4個.
所以. 3分
(2)設(shè)滿足條件的一個等差數(shù)列首項為,公差為,.
,,的可能取值為.
對于給定的,, 當(dāng)分別取時,可得遞增等差數(shù)列個(如:時,,當(dāng)分別取時,可得遞增等差數(shù)列91個:;;;,其它同理).
所以當(dāng)取時,可得符合要求的等差數(shù)列的個數(shù)為:
. 8分
(3)設(shè)等差數(shù)列首項為,公差為,
,,
記的整數(shù)部分是,則,即.
的可能取值為,
對于給定的,,當(dāng)分別取時,可得遞增等差數(shù)列個.
所以當(dāng)取時,得符合要求的等差數(shù)列的個數(shù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{ }、{ }滿足:.
(1)求
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項公式;
(3)設(shè),求實數(shù)為何值時 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項,公差,且、、分別是等比數(shù)列的、、.
(1)求數(shù)列和的通項公式;
(2)設(shè)數(shù)列對任意正整數(shù)均有成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從數(shù)列中抽出一些項,依原來的順序組成的新數(shù)列叫數(shù)列的一個子列.
(1)寫出數(shù)列的一個是等比數(shù)列的子列;
(2)設(shè)是無窮等比數(shù)列,首項,公比為.求證:當(dāng)時,數(shù)列不存在
是無窮等差數(shù)列的子列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,且對任意的成等比數(shù)列,其公比為,
(1)若;
(2)若對任意的成等差數(shù)列,其公差為.
①求證:成等差數(shù)列,并指出其公差;
②若,試求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),求數(shù)列的前項和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com