【題目】在邊長(zhǎng)為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足且,將沿直線折到的位置. 在翻折過(guò)程中,下列結(jié)論成立的是( )
A.在邊上存在點(diǎn),使得在翻折過(guò)程中,滿足平面
B.存在,使得在翻折過(guò)程中的某個(gè)位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時(shí),
D.在翻折過(guò)程中,四棱錐體積的最大值記為,的最大值為
【答案】D
【解析】
利用反證法可證明A、B錯(cuò)誤,當(dāng)且二面角為直二面角時(shí),計(jì)算可得,從而C錯(cuò)誤,利用體積的計(jì)算公式及放縮法可得,從而可求的最大值為,因此D正確.
對(duì)于A,假設(shè)存在,使得平面,
如圖1所示,
因?yàn)?/span>平面,平面平面,故,
但在平面內(nèi),是相交的,
故假設(shè)錯(cuò)誤,即不存在,使得平面,故A錯(cuò)誤.
對(duì)于B,如圖2,
取的中點(diǎn)分別為,連接,
因?yàn)?/span>為等邊三角形,故,
因?yàn)?/span>,故
所以均為等邊三角形,故,,
因?yàn)?/span>,,,故共線,
所以,因?yàn)?/span>,故平面,
而平面,故平面平面,
若某個(gè)位置,滿足平面平面,則在平面的射影在上,也在上,故在平面的射影為,所以,
此時(shí),這與矛盾,故B錯(cuò)誤.
對(duì)于C,如圖3(仍取的中點(diǎn)分別為,連接)
因?yàn)?/span>,所以為二面角的平面角,
因?yàn)槎娼?/span>為直二面角,故,所以,
而,故平面,因平面,故.
因?yàn)?/span>,所以.
在中,,
在中,,故C錯(cuò).
對(duì)于D,如圖4(仍取的中點(diǎn)分別為,連接),
作在底面上的射影,則在上.
因?yàn)?/span>,所以且,所以其.
又
,
令,則,
當(dāng)時(shí),;當(dāng)時(shí),.
所以在為增函數(shù),在為減函數(shù),故.
故D正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)取何值時(shí),方程()無(wú)解?有一解?有兩解?有三解?
(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為一個(gè)等腰三角形形狀的空地,腰CA的長(zhǎng)為3(百米),底AB的長(zhǎng)為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等、面積分別為S1和S2.
(1) 若小路一端E為AC的中點(diǎn),求此時(shí)小路的長(zhǎng)度;
(2) 求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線的斜率為2的切線方程;
(2)證明:;
(3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,給定個(gè)整點(diǎn),其中.
(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;
(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.
(i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;
(ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的焦點(diǎn)是,,且過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)左焦點(diǎn)的直線與橢圓相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).問(wèn)橢圓上是否存在點(diǎn),使線段和線段相互平分?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,過(guò)橢圓E的左焦點(diǎn)且與x軸垂直的直線與橢圓E相交于的P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),的面積為.
(1)求橢圓E的方程;
(2)點(diǎn)M,N為橢圓E上不同兩點(diǎn),若,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線上與C交于A,B兩點(diǎn),是否存在l,使得點(diǎn)在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com