已知函數(shù),,函數(shù)的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設斜率為的直線與函數(shù)的圖象交于兩點,(
證明:

(1)(2)(3)證明如下

解析試題分析:解:(1)依題意得,則
由函數(shù)的圖象在點處的切線平行于軸得:
 
(2)由(1)得 
∵函數(shù)的定義域為,令
函數(shù)上單調遞增,在單調遞減;在上單調遞增.故函數(shù)的極小值為
(3)證法一:依題意得
要證,即證
,即證 
),即證
)則
在(1,+)上單調遞減,
 即,--------------①
)則
在(1,+)上單調遞增,
=0,即)--------------②
綜①②得),即
【證法二:依題意得,

,當時,,當時,
單調遞增,在單調遞減,又

考點:導數(shù)的運用
點評:導數(shù)常應用于求曲線的切線方程、求函數(shù)的最值與單調區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若x=時,取得極值,求的值;
(2)若在其定義域內為增函數(shù),求的取值范圍;
(3)設,當=-1時,證明在其定義域內恒成立,并證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:;
(Ⅲ)若是“一階比增函數(shù)”,且有零點,求證:有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù),其中是自然對數(shù)的底數(shù)。
(1)判斷在R上的單調性;
(2)當時,求上的最值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.
函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;
(1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.
當x=                 時,y最小=                         .
(2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.
(3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)=log)為奇函數(shù),a為常數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內單調遞增;
(Ⅲ)若對于[3,4]上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)滿足,其中a>0,a≠1.
(1)對于函數(shù),當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當x∈(-∞,2)時,的值為負數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x-ln(xa)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值.]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個數(shù)字”.已知是先后拋擲該枚骰子得到的數(shù)字,函數(shù) 
(1)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時,使函數(shù)有零點的概率;
(2)求函數(shù)在區(qū)間(-3,+∞)上是增函數(shù)的概率.

查看答案和解析>>

同步練習冊答案