【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

【答案】D
【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=y﹣ax得y=ax+z,即直線的截距最大,z也最大.
若a=0,此時(shí)y=z,此時(shí),目標(biāo)函數(shù)只在A處取得最大值,不滿足條件,
若a>0,目標(biāo)函數(shù)y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最優(yōu)解不唯一,
則直線y=ax+z與直線2x﹣y+2=0平行,此時(shí)a=2,
若a<0,目標(biāo)函數(shù)y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最優(yōu)解不唯一,
則直線y=ax+z與直線x+y﹣2=0,平行,此時(shí)a=﹣1,
綜上a=﹣1或a=2,
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是(
A.y= 與y=2
B.y= 與y=( 2
C.y=lgx2與y=2lgx
D.y= 與y=x(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣4,4)、B(4,4),直線AM與BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率之差為﹣2,點(diǎn)M的軌跡為曲線C.

(1)求曲線C 的軌跡方程;

(2)Q為直線y=﹣1上的動(dòng)點(diǎn),過Q做曲線C的切線,切點(diǎn)分別為D、E,求△QDE的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, 分別是中點(diǎn),弧的半徑分別為,點(diǎn)平分弧,過點(diǎn)作弧的切線分別交于點(diǎn).四邊形為矩形,其中點(diǎn)在線段上,點(diǎn)在弧上,延長(zhǎng)交于點(diǎn).設(shè),矩形的面積為.

(1)求的解析式并求其定義域;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.

(1)求的通項(xiàng)公式;

(2)若,且數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以T=4為周期的函數(shù)f(x)= ,其中m>0.若方程3f(x)=x恰有5個(gè)實(shí)數(shù)解,則m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且滿足 為常數(shù).

1是否存在數(shù)列,使得?若存在,寫出一個(gè)滿足要求的數(shù)列;若不存在,說明理由.

2)當(dāng)時(shí),求證:

3)當(dāng)時(shí),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國(guó)電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,2016年雙11期間,某購(gòu)物平臺(tái)的銷售業(yè)

績(jī)高達(dá)1207億人民幣。與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.

(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量

求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列;

的數(shù)學(xué)期望和方差.

,其中

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品好評(píng)

140

對(duì)商品不滿意

10

合計(jì)

200

查看答案和解析>>

同步練習(xí)冊(cè)答案