【題目】下列各組函數(shù)是同一函數(shù)的是( )
A.y= 與y=2
B.y= 與y=( )2
C.y=lgx2與y=2lgx
D.y= 與y=x(x≠0)
【答案】D
【解析】解:對于A,y= =2(x≠0)與y=2,定義域不同,不是同一函數(shù);對于B,y= =|x|,與y=( )2=x,(x≥0)定義域不同,對應關系不同,不是同一函數(shù);
對于C,y=lgx2與y=2lgx,前者定義域為{x|x≠0},后者定義域為{x|x>0},不是同一函數(shù);
對于D,y= =x(x≠0)與y=x(x≠0),定義域相同,對應關系相同,是同一函數(shù).
故選:D.
【考點精析】通過靈活運用判斷兩個函數(shù)是否為同一函數(shù),掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù)即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①向量 與 是共線向量,則A、B、C、D必在同一直線上;
②向量 與向量 平行,則 方向相同或相反;
③若下列向量 、 滿足 ,且 與 同向,則 ;
④若 ,則 的長度相等且方向相同或相反;
⑤由于零向量方向不確定,故不能與任何向量平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,且
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)設,若存在極大值,且對于的一切可能取值, 的極大值均小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax﹣﹣2lnx.
(Ⅰ)若f(x)在x=2時有極值,求實數(shù)a的值和f(x)的極大值;
(Ⅱ)若f(x)在定義域上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),則實數(shù)a的取值范圍是( )
A.
B.(0,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1的極坐標方程和曲線C2的普通方程;
(2射線θ=﹣ 與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為( )
A. 或﹣1
B.2或
C.2或1
D.2或﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com