【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):

x

6

8

10

12

y

2

3

5

6

(1)請在圖中畫出上表數(shù)據(jù)的散點圖;

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

相關(guān)公式:

【答案】(1)見解析;(2);(3)4.

【解析】試題分析:

把所給的四對數(shù)據(jù)寫成對應(yīng)的點的坐標(biāo),在坐標(biāo)系中描出來即可得到散點圖.

由題意求出橫標(biāo)和縱標(biāo)的平均數(shù),求出系數(shù),再求出的值,即可得到回歸方程,注意運算不要出錯.

由回歸直線方程預(yù)測,記憶力為9的同學(xué)的判斷力約為4

試題解析:

把所給的四對數(shù)據(jù)寫成對應(yīng)的點的坐標(biāo),在坐標(biāo)系中描出來,得到散點圖如圖所示:

(2)由題意得

,

,

,

,

∴線性回歸方程為

由回歸直線方程知,當(dāng)時,,

所以預(yù)測記憶力為9的同學(xué)的判斷力約為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且 + =
(1)證明:sinAsinB=sinC;
(2)若b2+c2﹣a2= bc,求tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實數(shù)a,b滿足f(a)=0,g(b)=0,則(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實數(shù)a,b滿足ab>0ab,由a、b、、按一定順序構(gòu)成的數(shù)列( 。

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的方程: ,P為橢圓上的一點(點P在第三象限上),圓P 以點P為圓心,且過橢圓的左頂點M與點C(﹣2,0),直線MP交圓P與另一點N.

(1)求圓P的標(biāo)準(zhǔn)方程;
(2)若點A在橢圓E上,求使得 取得最小值的點A的坐標(biāo);
(3)若過橢圓的右頂點的直線l上存在點Q,使∠MQN為鈍角,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若方程上有根,求實數(shù)的取值范圍;

(2)設(shè),若對任意的,都有求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的極值;

(2)請?zhí)詈孟卤?在答卷),并畫出的圖象(不必寫出作圖步驟);

(3)設(shè)函數(shù)的圖象與軸有兩個交點,求的值。

查看答案和解析>>

同步練習(xí)冊答案