雙曲線
的離心率為
試題分析:根據(jù)題意,由于雙曲線
化為標準式為
,焦點在x軸上,同時a=2,b=1,c=
那么根據(jù)離心率e=c:a=
:2,故可知答案為D。
點評:本題主要考查雙曲線的幾何性質,求雙曲線的離心率,應注意焦點的位置,避免錯解.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設
是橢圓
上的兩點,已知向量
,若
且橢圓的離心率
,短軸長為2,
O為坐標原點.
(1)求橢圓的方程;
(2)試問△
AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
與拋物線
有一個公共的焦點
,且兩曲線的一個交點為
,若
,則雙曲線的漸近線方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
=1上一點P與橢圓的兩個焦點F
1、F
2的連線互相垂直,則△PF
1F
2的面積為_____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
為拋物線
上一個動點,直線
:
,
:
,則
到直線
、
的距離之和的最小值為 ( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若雙曲線
的漸近線與圓
(
)相切,則
A.5 | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
極坐標方程
和參數(shù)方程
所表示的圖形分別是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓E:
(
)離心率為
,上頂點M,右頂點N,直線MN與圓
相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點
O和點
F分別為雙曲線
的中心和左焦點,點P為雙曲線右支上的任意一點,則
的最小值為( )
查看答案和解析>>