若點(diǎn)O和點(diǎn)F分別為雙曲線 的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則的最小值為(  )
A.-6B.-2C.0D.10
D

試題分析:解:設(shè)P(x,y)(x≥2)由題意可得,F(xiàn)(-3,0),O(0,0),
 =(x,y),=(x+3,y),∴=x2+3x+y2=x2+3x+-5=+3x-5(x≥2),結(jié)合二次函數(shù)的性質(zhì)可知,當(dāng)x=2時(shí),f(x)有最小值10,故選D
點(diǎn)評(píng):本題以向量的數(shù)量積的坐標(biāo)表示為載體,主要考查了雙曲線的范圍及二次函數(shù)的性質(zhì)的綜合應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為,點(diǎn)在直線上,點(diǎn)到橢圓的左焦點(diǎn)的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點(diǎn),點(diǎn)軸上的射影為,的中點(diǎn),直線交直線于點(diǎn),的中點(diǎn),試探究:在橢圓上運(yùn)動(dòng)時(shí),直線與圓:的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時(shí),曲線與曲線有兩個(gè)交點(diǎn).求的值;
(2)若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓C的圓心是直線與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知、是一對(duì)相關(guān)曲線的焦點(diǎn),是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)時(shí),這一對(duì)相關(guān)曲線中雙曲線的離心率是( 。
                                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中心在原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,直線與雙曲線交于兩點(diǎn),線段中點(diǎn)在第一象限,并且在拋物線上,且到拋物線焦點(diǎn)的距離為,則直線的斜率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在橢圓上找一點(diǎn),使這一點(diǎn)到直線的距離的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案