精英家教網 > 高中數學 > 題目詳情
已知為拋物線上一個動點,直線,則到直線、的距離之和的最小值為 (     ).
A.B.C.D.
A

試題分析:將P點到直線l1:x=-1的距離轉化為P到焦點F(1,0)的距離,過點F作直線l2垂線,交拋物線于點P,此即為所求最小值點,∴P到兩直線的距離之和的最小值為=,故選A.
點評:解題時要認真審題,注意拋物線定義及點到直線距離公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

拋物線的準線方程是               

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為橢圓)的兩個焦點,過F2作橢圓的弦AB,若的周長為16,橢圓的離心率,則橢圓的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,以坐標原點為幾點,軸的正半軸為極軸建立極坐標系.已知直線上兩點的極坐標分別為,圓的參數方程(為參數).
(Ⅰ)設為線段的中點,求直線的平面直角坐標方程;
(Ⅱ)判斷直線與圓的位置關系.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:()經過兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線l與橢圓C交于A、B兩點,橢圓C上一點M滿足.求證:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的離心率為,且經過點
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設斜率為1的直線l與橢圓C相交于兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設yP,yQ分別為點P,Q的縱坐標,且.求△ABM的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓的中心在原點,其上、下頂點分別為,點在直線上,點到橢圓的左焦點的距離為.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓上異于的任意一點,點軸上的射影為,的中點,直線交直線于點,的中點,試探究:在橢圓上運動時,直線與圓:的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案