【題目】如圖,在三棱柱中, 為的中點, , .
(1)求證: 平面;
(2)當時,求直線與平面所成角的正弦值.
【答案】(1)見解析;(2).
【解析】【試題分析】(1)依據(jù)題設條件運用直線與平面平行的判定定理進行分析推證;(2)依據(jù)題設條件建立空間直角坐標系,借助向量的有關(guān)知識與數(shù)量積公式分析求解:
(1)證明:
連結(jié)與相交于點,連結(jié).
∵為中點,∴,
又∵平面平面,
∴平面.
(2)∵,
∴,∴,
又∵平面平面,
∴平面,
∴平面平面.
如圖,過在平面內(nèi)作,垂足為.
∵平面平面,平面平面,
∴平面.
以點為原點, 的方向分別為軸、軸、軸正方向,建立空間直角坐標系,得下列坐標:
.
設平面的一個法向量,則
,∴,解之得.
∴.
又∵.∴,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=asin(2ωx+ )+ +b(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是 ,最小值是 .
(1)求ω、a、b的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,點,曲線 ,以極點為坐標原點,極軸為軸正半軸建立直角坐標系.
(1)在直角坐標系中,求點的直角坐標及曲線的參數(shù)方程;
(2)設點為曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)函數(shù)的圖象能否與軸相切?若能與軸相切,求實數(shù)的值;否則,請說明理由;
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)能取到的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要想得到函數(shù)y=sin(x﹣ )的圖象,只須將y=cosx的圖象( )
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com