如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則BC1與平面BB1D1D所成角的正弦值為(   )
A.B.C.D.
D
交與O點,再連BO,則為所成角,下面就是計算了。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,平面PAD⊥平面ABCD,ABCD為正方形,PAAD,且PA=AD=2,E,FG分別是線段PA,PD,CD的中點。
(1)求證:BC//平面EFG
(2)求三棱錐EAFG的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直三棱柱中,平面側面。
(Ⅰ)求證:
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θφ的大小關系,并予以證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在五棱錐中,底面,,,。
(1)證明:平面;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在幾何體中,面為矩形,,
(1)求證;當時,平面PBD⊥平面PAC;
(2)當時,求二面角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體中,的中點,.(Ⅰ)求證:平面;(Ⅱ)求異面直線所成角的大小;

(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題









(1)求點到平面的距離;
(2)求與平面所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

矩形ABCD(AB≤BC)中,AC=2,沿對角線AC把它折成直二面角B-AC-D后,BD=,求AB、BC的長.
 
翰林匯

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,則以下結論:
①BD∥平面CB1D1; 
②AC1⊥BD; 
③AC1⊥平面CB1D
其中正確結論的個數(shù)是           (   )
A.0B.1 C.2D.3

查看答案和解析>>

同步練習冊答案