【題目】已知拋物線的焦點為,過點作斜率為的直線交拋物線于兩點.

1)若,求的面積;

2)過點分別作拋物線的兩條切線,且直線與直線相交于點,問:點是否在某條定直線上?若在,求該定直線的方程;若不在,請說明理由.

【答案】1; 2.

【解析】

1)若,則直線的方程是.聯(lián)立,求得和焦點到直線的距離是,即可求得答案;

2)由,設,則,

,,設直線的方程為,化為,結合已知,即可求得答案.

1)若,則直線的方程是.

聯(lián)立消去,不妨設點軸上方,

設點,則

.

而焦點到直線的距離是,

的面積為.

2)由,

,,則

,

設直線的方程為,化為,

聯(lián)立方程消去

得:

,

,

則直線的方程為

同理,直線的方程為,

聯(lián)立方程消去

得:,

,

在定直線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,直線與拋物線C相切于點P,過點P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點為Q,APQ的中點.Ay軸的垂線與y軸交于點H,與直線l相交于點N,M為線段AN的中點.

1)求拋物線C的方程;

2)在x軸上是否存在一點T,使得當割線PQ變化時,總有為定值?若存在,求出該點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,是橢圓上的一點,且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點,點關于原點的對稱點為

(1)證明:直線的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,,,EAD的中點,OACBE的交點.沿BE折起到圖2的位置,得到四棱錐.

1)證明:平面;

2)若平面平面,求平面與平面夾角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,直線與拋物線C相切于點P,過點P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點為Q,APQ的中點.Ay軸的垂線與y軸交于點H,與直線l相交于點N,M為線段AN的中點.

1)求拋物線C的方程;

2)求證:點M在拋物線C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有若干撲克牌:6張牌面分別是2,3,4,5,6,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點數(shù)之和是偶數(shù)的概率為,則(

A.B.C.D.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位生物學專家在篩選臨床抗病毒藥物,,時做出如下預測:

甲說:都有效;

乙說:不可能同時有效;

丙說:有效;

丁說:至少有一種有效.

臨床試驗后證明,有且只有兩種藥物有效,且有且只有兩位專家的預測是正確的,由此可判斷有效的藥物是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設直線的交點為,當變化時點的軌跡為曲線.

1)求出曲線的普通方程;

2)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線上的動點,求點到直線的距離的最大值.

查看答案和解析>>

同步練習冊答案