【題目】已知連續(xù)不斷函數(shù),,

(1)證明:函數(shù)在區(qū)間上有且只有一個零點;

(2)現(xiàn)已知函數(shù)上單調遞增,且都只有一個零點(不必證明),記三個函數(shù)的零點分別為

求證:Ⅰ);

Ⅱ)判斷的大小,并證明你的結論。

【答案】(1)見解析;(2)見解析

【解析】分析:(1)由函數(shù)的解析式可知函數(shù)在區(qū)間上單調遞減,結合函數(shù)零點存在定理可得函數(shù)在區(qū)間上有且只有一個零點;

(2)由題意可得,結合函數(shù)的對稱性可得;

由題意結合函數(shù)的特征可證得.

詳解:

(1)先證明在區(qū)間上有零點:由于,

由零點存在性定理知在區(qū)間上有零點

再證明上是單調遞減函數(shù):設

由于上遞減,所以

從而,即上是單調遞減函數(shù).

故函數(shù)有且只有一個零點.

(2)Ⅰ)因為的零點,所以有,將其變形為

,即,從而有=0 ,

又因為,且由(1)的結論上有唯一零點,

從而有, .

Ⅱ)判斷,證明如下:

由于,

由零點存在性定理和已知得,從而有

所以有,又由已知上單調遞增,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25x萬元(國家規(guī)定大貨車的報廢年限為10年).

1)大貨車運輸?shù)降趲啄昴甑祝撥囘\輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列 中, ,且 成等差數(shù)列.
(1)求等比數(shù)列 的通項公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項和 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列 中, ,數(shù)列 中, .
(1)求數(shù)列 , 的通項公式;
(2)若 ,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)求 的單調區(qū)間;
(2)若 對一切 恒成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a11,an13an1.

(1)證明是等比數(shù)列,并求{an}的通項公式;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)().

(Ⅰ)當時,解不等式;

(Ⅱ)證明:方程最少有1個解,最多有2個解,并求該方程有2個解時實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點的中點.

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線 與C1的異于原點的交點為A,與C2的交點為B,求|AB|.

查看答案和解析>>

同步練習冊答案