【題目】如圖,在半徑為3圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.

1寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;

2當(dāng)為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?(圓柱體積公式: 為圓柱的底面積, 為圓柱的高)

【答案】(1)其中.(2)當(dāng) 時,做出的圓柱形罐子體積最大,最大體積是 .

【解析】試題分析:(1)連接OB,在RtOAB中,由AB=x,利用勾股定理可得,設(shè)圓柱底面半徑為r,則=2πr,即可得出r.利用V=πr2x(其中0x30)即可得出.(2)利用導(dǎo)數(shù)V′,得出其單調(diào)性,即可得出結(jié)論.

試題解析:

⑴連結(jié),因為,所以,設(shè)圓柱底面半徑為,則,即,所以,其中.

⑵由,得,

列表如下:

極大值

所以當(dāng)時, 有極大值,也是最大值為.

答:當(dāng) 時,做出的圓柱形罐子體積最大,最大體積是 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,,點在直線上,若的面積為10,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意m[-1,1]函數(shù)f(x)x2(m4)x42m的值恒大于零,x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點

(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長AB;

(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題橢圓C1 表示的是焦點在軸上的橢圓,命題,直線與橢圓C2 恒有公共點.

(1)若命題“”是假命題,命題“”是真命題,求實數(shù)的取值范圍.

(2)若假時,求橢圓C1、橢圓C2的上焦點之間的距離d的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是平面,是直線,給出下列命題:

,,則;

,,,則;

如果,,,是異面直線,則相交;

,且,則,且

其中正確確命題的序號是_____(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足.

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為,是否存在正整數(shù),使? 若存在,求出符合條件的所有的值構(gòu)成的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求過點,斜率是直線的斜率的的直線方程;

(2)求經(jīng)過點,且在軸上的截距等于在軸上截距的2倍的直線方程.

查看答案和解析>>

同步練習(xí)冊答案