【題目】(1)求過點,斜率是直線的斜率的的直線方程;

(2)求經(jīng)過點,且在軸上的截距等于在軸上截距的2倍的直線方程.

【答案】(1) ;(2) 所求直線方程為.

【解析】試題分析: (1)由已知直線求出所求直線的斜率,再利用直線方程的點斜式求解即可;(2)分兩種情況討論:當(dāng)直線過原點時,設(shè)所求直線方程為, 當(dāng)直線不過原點時,設(shè)所求直線方程為=,則結(jié)論易得.

試題解析:

(1)所設(shè)求直線的斜率為,依題意==

直線經(jīng)過點

所求直線方程為,

.

(2) 當(dāng)直線不過原點時,設(shè)所求直線方程為=

(-5,2)代入所設(shè)方程,解得,

所求直線方程為,

當(dāng)直線過原點時,設(shè)所求直線方程為,

(-5,2)代入所設(shè)方程,解得=,

所求直線方程為= ,;

綜上:所求直線方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為3圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.

1寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;

2當(dāng)為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?(圓柱體積公式: , 為圓柱的底面積, 為圓柱的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知=(2,1),=(1,7),=(5,1),設(shè)Z是直線OP上的一動點.

(1)求使取最小值時的;

(2)(1)中求出的點Z,求cosAZB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在直三棱柱中, 中點.

)求證: 平面

)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國在超級計算機(jī)方面發(fā)展迅速,躋身國際先進(jìn)水平國家,預(yù)報天氣的準(zhǔn)確度也大大提高,天氣預(yù)報說今后的三天中,每一天下雨的概率都是 ,我們可以通過隨機(jī)模擬的方法估計概率.我們先產(chǎn)生組隨機(jī)數(shù)

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

在這組數(shù)中,用表示下雨,表示不下雨,那么今后的三天中都下雨的概率近似為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點的坐標(biāo);若不存在,請說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知兩點軸的正半軸上,點軸的正半軸上.若

)求向量,夾角的正切值.

)問點在什么位置時,向量,夾角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B. 若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行

C. 若兩個平面都垂直于第三個平面,則這兩個平面平行

D. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有名學(xué)生參加學(xué)校組織的“數(shù)學(xué)競賽集訓(xùn)隊”選拔考試,現(xiàn)從中等可能抽出名學(xué)生的成績作為樣本制成如圖頻率分布表

分組

頻數(shù)

頻率

0.025

0.050

0.200

12

0.300

0.275

4

0.00

合計

1

(1)求的值,并根據(jù)題中信息估計總體平均數(shù)是多少

(2)若成績不低于分的同學(xué)能參加“數(shù)學(xué)競賽集訓(xùn)隊”,試估計該校大約多少名學(xué)生能參加“數(shù)學(xué)競賽集訓(xùn)隊”?

查看答案和解析>>

同步練習(xí)冊答案