【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長(zhǎng)為4的等邊三角形,,是的中點(diǎn).
(1)求證:;
(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.
【答案】(1)見證明;(2)
【解析】
(1)由面面垂直的性質(zhì)可得平面.可得 ,,結(jié)合得平面.由,可得,得到平面,從而可得結(jié)果;(2)根據(jù)直線與平面所成角的正弦值為,可求得, ,以,,所在的直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量垂直數(shù)量積為零列方程求出平面的一個(gè)法向量,結(jié)合平面的一個(gè)法向量為,利用空間向量夾角余弦公式可得結(jié)果.
(1)因?yàn)?/span>是等邊三角形,是的中點(diǎn),
所以.
又平面平面,平面平面,平面,
所以平面.
所以,
又因?yàn)?/span>,,
所以平面.所以.
又因?yàn)?/span>,所以.
又且,平面,所以平面.
所以.
(2)
由(1)得平面.
所以就是直線與平面所成角.
因?yàn)橹本與平面所成角的正弦值為,即,所以.
所以,解得.則.
由(1)得,,兩兩垂直,所以以為原點(diǎn),,,所在的直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,
則點(diǎn),, ,,
所以,.
令平面的法向量為,則
由得解得
令,可得平面的一個(gè)法向量為;
易知平面的一個(gè)法向量為,
設(shè)平面與平面所成的銳二面角的大小為,則.
所以平面與平面所成的銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線(,)的右焦點(diǎn)作圓的切線,切點(diǎn)為.直線交拋物線于點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,M是AB的中點(diǎn).
(1)求證:;
(2)求二面角的余弦值;
(3)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).
(1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體V﹣DEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓, 是圓M內(nèi)一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線段PN的垂直平分線l和半徑MP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線E
(1)求曲線E的方程;
(2)過點(diǎn)D(0,3)作直線m與曲線E交于A,B兩點(diǎn),點(diǎn)C滿足 (O為原點(diǎn)),求四邊形OACB面積的最大值,并求此時(shí)直線m的方程;
(3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點(diǎn)F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,首項(xiàng)為2.若對(duì)任意的正整數(shù),恒成立.
(1)求,,;
(2)求證:是等比數(shù)列;
(3)設(shè)數(shù)列滿足,若數(shù)列,,…,(,)為等差數(shù)列,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com