【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

分析由雙曲線的右頂點到漸近線的距離求出,從而可確定雙曲線的方程和焦點坐標,進而得到拋物線的方程和焦點,然后根據(jù)拋物線的定義將點M到直線的距離轉(zhuǎn)化為到焦點的距離,最后結(jié)合圖形根據(jù)“垂線段最短”求解.

詳解由雙曲線方程可得,

雙曲線的右頂點為,漸近線方程為,即

雙曲線的右頂點到漸近線的距離等于,

,解得,

∴雙曲線的方程為,

∴雙曲線的焦點為

又拋物線的焦點與雙曲線的右焦點重合,

∴拋物線的方程為,焦點坐標為.如圖,

設(shè)點M到直線的距離為,到直線的距離為,則,

結(jié)合圖形可得當三點共線時,最小,且最小值為點F到直線的距離

故選B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最低氣溫(℃)

天數(shù)

11

25

36

16

2

以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.

求11月份這種電暖氣每日需求量(單位:臺)的分布列;

若公司銷售部以每日銷售利潤(單位:元)的數(shù)學(xué)期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式為實數(shù))的解集為,集合.

1)若,求的取值范圍;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點.

(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結(jié)果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.

1)求開始第4次發(fā)球時,甲、乙的比分為12的概率;

2表示開始第4次發(fā)球時乙的得分,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)(1)的結(jié)論下,若關(guān)于的不等式,時恒成立,的值

(3)令,若關(guān)于的方程內(nèi)至少有兩個解,求出實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小值及取到最小值時自變量x的集合;

(2)指出函數(shù)y的圖象可以由函數(shù)ysinx的圖象經(jīng)過哪些變換得到;

(3)x[0,m]時,函數(shù)yf(x)的值域為,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車“定速巡航”技術(shù)是用于控制汽車的定速行駛,當汽車被設(shè)定為定速巡航狀態(tài)時,電腦根據(jù)道路狀況和汽車的行駛阻力自動控制供油量,使汽車始終保持在所設(shè)定的車速行駛,而無需司機操縱油門,從而減輕疲勞,促進安全,節(jié)省燃料.某汽車公司為測量某型號汽車定速巡航狀態(tài)下的油耗情況,選擇一段長度為240km的平坦高速路段進行測試.經(jīng)多次測試得到一輛汽車每小時耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):

v

0

40

60

80

120

F

0

10

20

為了描述汽車每小時耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:

,,.

1)請選出你認為最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.

2)這輛車在該測試路段上以什么速度行駛才能使總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為集合.

1)若,求的取值范圍;

2)若存在兩個不相等負實數(shù),使得,求實數(shù)的取值范圍;

3)是否存在實數(shù),滿足對于任意,都有;對于任意的.都有,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案