【題目】如圖,四棱錐中,側面底面,,,,,,分別為的中點.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使與平面所成角的正弦值為,若存在求出的長,若不存在說明理由.
【答案】(1)證明見解析;(2)(3)存在;
【解析】
(1)取中點,可證明且,從而證明,進而可證明平面;(2)分別以為軸建立空間直角坐標系,求出各個點的坐標,利用向量法可求出二面角的余弦值;(3)假設存在點,利用向量法求與平面所成角的正弦值為時點的坐標,判斷是否在線段上,進而求出的長.
(1)證明:取中點,連接,
,即,
所以為平行四邊形,平面,平面,因此平面.
(2)解:因為,為的中點,所以,又因為側面底面且交線為,所以平面,
分別以為軸建立空間直角坐標系.
,
平面的法向量,
,,設平面的法向量,
則令,得.
所以,因此二面角的余弦值為.
(3)解:設,,,
平面的法向量,
所以,
解得或(舍),所以存在,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術》中記載:“芻甍者,下有袤有廣,而上有袤無廣.芻,草也.甍,屋蓋也.”今有底面為正方形的屋脊形狀的多面體(如圖所示),下底面是邊長為2的正方形,上棱,EF//平面ABCD,EF與平面ABCD的距離為2,該芻甍的體積為( )
A.6B.C.D.12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,求的值;
(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為實現(xiàn)2020年全面建設小康社會,某地進行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學研判,準備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產(chǎn)該部件.如圖是從甲設備生產(chǎn)的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.
根據(jù)行業(yè)質(zhì)量標準規(guī)定,該核心部件尺寸x滿足:|x﹣12|≤1為一級品,1<|x﹣12|≤2為二級品,|x﹣12|>2為三級品.
(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學期望;
(Ⅱ)將甲設備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進行檢驗.已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗費用為50元.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產(chǎn)品中隨機抽檢了10件,結果發(fā)現(xiàn)有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進行一一檢驗?請說明理由;
(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產(chǎn)品中一、二、三級品的概率分別是,,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應選購哪種設備?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學生考試中答對但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結果正確,無明顯推理錯誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”為評估此類解答導致的失分情況,某市教研室做了項試驗:從某次考試的數(shù)學試卷中隨機抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學老師集體評閱,統(tǒng)計發(fā)現(xiàn),滿分12分的題,閱卷老師所評分數(shù)及各分數(shù)所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數(shù)所占比例 |
某次數(shù)學考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數(shù)之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數(shù)之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分;當一、二評分數(shù)和仲裁分數(shù)差值的絕對值相同時,取仲裁分數(shù)和前兩評中較高的分數(shù)的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數(shù)及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數(shù)學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分的分布列及數(shù)學期望;
(2)本次數(shù)學考試有6個解答題,每題滿分12分,同學乙6個題的解答均為“類解答”.
①記乙同學6個題得分為的題目個數(shù)為計算事件的概率.
②同學丙的前四題均為滿分,第5題為“類解答”,第6題得8分.以乙、丙兩位同學解答題總分均值為依據(jù),談談你對“類解答”的認識.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標,并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當,|GH|,依次成等差數(shù)列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,平面平面,,,,,為棱上一動點,點是的中點.
(1)求證:;
(2)若,問是否存在點E,使得二面角的余弦值為?若存在,求出點E的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com