【題目】已知函數(shù).
(1)討論函數(shù)的零點(diǎn)個數(shù);
(2)若(為給定的常數(shù),且),記在區(qū)間上的最小值為,求證:.
【答案】(1)①當(dāng)時,無零點(diǎn);②當(dāng)時,有一個零點(diǎn);③當(dāng)時,有兩個零點(diǎn);(2)證明見解析.
【解析】
(1)根據(jù)解析式求得導(dǎo)函數(shù),并令求得極值點(diǎn).在極值點(diǎn)兩側(cè),判斷導(dǎo)函數(shù)的符號,并求得最小值.結(jié)合當(dāng)及時函數(shù)值特征,即可確定零點(diǎn)個數(shù).
(2)根據(jù)及,可得.進(jìn)而確定的表達(dá)式,代入不等式化簡變形,并令,構(gòu)造函數(shù),求得后由導(dǎo)函數(shù)符號判斷的單調(diào)性及最值,即可證明不等式成立.
(1)函數(shù),
則,
令,解得,
當(dāng)時,,所以在為單調(diào)遞減;
當(dāng)時,,所以在為單調(diào)遞增;
所以,
當(dāng)時;
當(dāng)時;
①當(dāng),即時,無零點(diǎn);
②當(dāng),即時,有一個零點(diǎn);
③當(dāng),即時,有兩個零點(diǎn);
(2)證明:因?yàn)?/span>,
所以,
由(1)可知在區(qū)間上的最小值,
,
所以不等式可化為
,
移項(xiàng)化簡可得,
所以,
即,
令,則.
所以原不等式可化為,
令.
則,
所以在單調(diào)遞減,
則,
即成立,
原不等式得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計(jì)這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:的離心率為,左、右頂點(diǎn)分別為、,線段的長為4.點(diǎn)在橢圓上且位于第一象限,過點(diǎn),分別作,,直線,交于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);
(2)直線與橢圓的另一交點(diǎn)為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,給出下列命題:
①當(dāng)時,;
②函數(shù)有2個零點(diǎn);
③的解集為;
④,,都有.
其中真命題的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.
(1)證明:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時,求證:;
(3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為和,由4個點(diǎn)、、和組成了一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線和橢圓交于兩點(diǎn)、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 分別是的中點(diǎn).
(1)求證: 平面;
(2)若三棱柱的體積為4,求異面直線與夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com