【題目】如圖,平面α∩平面β=l,A,C是α內(nèi)不同的兩點,B,D是β內(nèi)不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( 。
A.若ABCD,則MNl
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
【答案】BD
【解析】
由若兩兩相交的平面有三條交線,交線要么相交于一點,要么互相平行判定、、;用反證法證明.
解:若,則、、、四點共面,當(dāng)時,
平面、、兩兩相交有三條交線,分別為、、,則三條交線交于一點,
則與平面交于點,與不平行,故錯誤;
若,兩點重合,則,、、、四點共面,
平面、、兩兩相交有三條交線,分別為、、,
由,得,故正確;
若與相交,確定平面,平面、、兩兩相交有三條交線,分別為、、,
由,得,故錯誤;
當(dāng),是異面直線時,如圖,連接,取中點,連接,.
則,,,則,假設(shè),
,,,
又,平面,同理可得,平面,則,與平面平面矛盾.
假設(shè)錯誤,不可能與平行,故正確.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新《水污染防治法》已由中華人民共和國第十二屆全國人民代表大會常務(wù)委員會第二十八次會議于2017年6月27日通過,自2018年1月1日起施行.2018年3月1日,某縣某質(zhì)檢部門隨機(jī)抽取了縣域內(nèi)100眼水井,檢測其水質(zhì)總體指標(biāo).
羅斯水質(zhì)指數(shù) | 02 | 24 | 46 | 68 | 810 |
水質(zhì)狀況 | 腐敗污水 | 嚴(yán)重污染 | 污染 | 輕度污染 | 純凈 |
(1)求所抽取的100眼水井水質(zhì)總體指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(2)①由直方圖可以認(rèn)為,100眼水井水質(zhì)總體指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.21,5.99)內(nèi)的概率;
②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質(zhì),記這5眼水井水質(zhì)總體指標(biāo)值位于(6,10)內(nèi)的井?dāng)?shù)為,求的分布列和數(shù)學(xué)期望.
附:①計算得所抽查的這100眼水井總體指標(biāo)的標(biāo)準(zhǔn)差為;
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線交橢圓于兩點,為坐標(biāo)原點.
(1)若直線過橢圓的右焦點,求的面積;
(2)若,試問橢圓上是否存在點,使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,為中點,點在上且平面,在延長線上,,交于,且.
(1)證明:平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為正項等比數(shù)列,a1=1,數(shù)列{bn}滿足b2=3,a1b1+a2b2+a3b3+…+anbn=3+(2n﹣3)2n.
(1)求an;
(2)求的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(Ⅰ)若的一個焦點為,且點在上,求橢圓的方程;
(Ⅱ)已知上有兩個動點,為坐標(biāo)原點,且,求線段的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(4,0),與拋物線交于兩點,點在直線上的射影是.
(1)求的值;
(2)若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面四邊形是直角梯形,底面,,,,,為的中點.
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com