10.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(1,1),$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$-λ$\overrightarrow$,如果$\overrightarrow{m}$⊥$\overrightarrow{n}$,那么實(shí)數(shù)λ=( 。
A.4B.3C.2D.1

分析 由平面向量坐標(biāo)運(yùn)算法則先分別求出$\overrightarrow{m},\overrightarrow{n}$,再由$\overrightarrow{m}$⊥$\overrightarrow{n}$,能求出實(shí)數(shù)λ.

解答 解:∵量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(1,1),
∴$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$=(2,-1),
$\overrightarrow{n}$=$\overrightarrow{a}$-λ$\overrightarrow$=(1-λ,-2-λ),
∵$\overrightarrow{m}$⊥$\overrightarrow{n}$,∴$\overrightarrow{m}•\overrightarrow{n}$=2(1-λ)+(-1)(-2-λ)=0,
解得實(shí)數(shù)λ=4.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,涉及到平面向量坐標(biāo)運(yùn)算法則、向量垂直的性質(zhì)的應(yīng)用等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)試成績(jī)(百分制)如圖所示.
①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);
②甲同學(xué)的平均分比乙同學(xué)高;
③甲同學(xué)的平均分比乙同學(xué)低;
④甲同學(xué)成績(jī)的標(biāo)準(zhǔn)差小于乙同學(xué)成績(jī)的標(biāo)準(zhǔn)差.
上面說法正確的是( 。
A.③④B.①②C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為$y=\frac{3}{4}x$,則雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知t=$\int_0^2{(3{x^2}-1)}$dx,若(1+tx)4=a0+a1x+a2x2+a3x3+a4x4,則a1-a2+a3-a4=-624.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,記S為△ABC的面積,若A=60°,b=1,S=$\frac{3\sqrt{3}}{4}$,則c=3,cosB=$\frac{5\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.莖葉圖中,莖2的葉子數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的漸近線為等邊三角形OAB的邊OA、OB所在直線,直線AB過焦點(diǎn),且|AB|=2,則雙曲線實(shí)軸長(zhǎng)為( 。
A.$\sqrt{3}$B.$3\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(2x-$\frac{π}{3}$),g(x)=x2-2,若對(duì)任意的實(shí)數(shù)x1,總存在實(shí)數(shù)x2使得f(x1)=g(x2)成立,則x2的取值范圍是(  )
A.[-1,1]B.$[{-\sqrt{3},\sqrt{3}}]$C.(-∞,-1]∪[1,+∞)D.[-$\sqrt{3}$,-1]∪[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是一個(gè)簡(jiǎn)單幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案