【題目】橢圓的左右焦點(diǎn)分別為,與軸正半軸交于點(diǎn),若為等腰直角三角形,且直線被圓所截得的弦長(zhǎng)為2.
(1)求橢圓的方程;
(2)直線:與橢圓交于點(diǎn),線段的中點(diǎn)為,射線與橢圓交于點(diǎn),點(diǎn)為的重心,求證:的面積為定值.
【答案】(1);(2)
【解析】分析:(1)由等腰直角三角形的性質(zhì)分析可得,又由直線與圓的位置關(guān)系可得的值,進(jìn)而可得的值,將的值代入橢圓的方程即可得結(jié)論;(2)根據(jù)題意,分、兩種情況討論,若直線的斜率不存在,容易求出的面積,若直線的斜率存在,設(shè)直線的方程為,設(shè),聯(lián)立直線與橢圓的方程,結(jié)合一元二次方程中根與系數(shù)的關(guān)系,求出的面積消去參數(shù),綜合兩種情況可得結(jié)論.
詳解:(1)由為等腰直角三角形可得,直線:被圓圓所截得的弦長(zhǎng)為2,所以,所以橢圓的方程為.
(2)若直線的斜率不存在,則.
若直線的斜率存在,設(shè)直線的方程為,設(shè),
即,則,,,
由題意點(diǎn)為重心,設(shè),則,
所以,,代入橢圓,得
,整理得,
設(shè)坐標(biāo)原點(diǎn)到直線的距離為,則的面積
.
綜上可得的面積為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由合肥一中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為,畫(huà)面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
(2)設(shè)畫(huà)面的高與寬的比為,且,求為何值時(shí),宣傳畫(huà)所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)于任意,總有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}滿(mǎn)足a1 , 2a2 , a3+6成等差數(shù)列,且a42=9a1a5 ,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=( an+1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于四棱柱的說(shuō)法:
①四條側(cè)棱互相平行且相等;
②兩對(duì)相對(duì)的側(cè)面互相平行;
③側(cè)棱必與底面垂直;
④側(cè)面垂直于底面.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1的值時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和對(duì)稱(chēng)軸方程;
(2)若,求的值域.
【答案】(1)對(duì)稱(chēng)軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡(jiǎn)得到,由周期公式和對(duì)稱(chēng)軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對(duì)稱(chēng)軸為,最小正周期;
(2)當(dāng)時(shí),,
因?yàn)?/span>在單調(diào)遞增,在單調(diào)遞減,
在取最大值,在取最小值,
所以,
所以.
【點(diǎn)睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對(duì)稱(chēng)性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,其中PA=PD=AD=2,∠BAD=60°,點(diǎn)M在線段PC上,且PM=2MC,N為AD的中點(diǎn).
(1)求證:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐P﹣NBM的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com