【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對稱軸為,最小正周期

(2)當(dāng)時,

因?yàn)?/span>單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以,

所以

【點(diǎn)睛】

本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.

型】解答
結(jié)束】
21

【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,

(1)求等比數(shù)列的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和

【答案】(1)(2)

【解析】

1)將已知兩式作差,利用等比數(shù)列的通項(xiàng)公式,可得公比,由等比數(shù)列的求和可得首項(xiàng),進(jìn)而得到所求通項(xiàng)公式;(2)求得bnn,,由裂項(xiàng)相消求和可得答案.

(1)等比數(shù)列的前項(xiàng)和為,公比,①,

②.

②﹣①,得,則,

,所以,

因?yàn)?/span>,所以

所以,

所以

(2),

所以前項(xiàng)和

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點(diǎn)的橫坐標(biāo)的平方和為.

1)求該一元二次函數(shù);

2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請說出平移的方式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左右焦點(diǎn)分別為,與軸正半軸交于點(diǎn),若為等腰直角三角形,且直線被圓所截得的弦長為2.

(1)求橢圓的方程;

(2)直線與橢圓交于點(diǎn),線段的中點(diǎn)為,射線與橢圓交于點(diǎn),點(diǎn)的重心,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對的邊分別為.

1)若邊的中點(diǎn),求證: ;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點(diǎn),分別是,的中點(diǎn),則下列說法正確的是( )

A. B. 所成角為

C. 平面 D. 與平面所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“作品獲得一等獎”; 乙說:“作品獲得一等獎”;

丙說:“,兩項(xiàng)作品未獲得一等獎”; 丁說:“作品獲得一等獎”.

若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)為某一個三角形的邊長,則實(shí)數(shù)m的取值范圍是(
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為虛數(shù)集,設(shè),則下列類比所得的結(jié)論正確的是__________

①由,類比得

②由,類比得

③由,類比得

④由,類比得

查看答案和解析>>

同步練習(xí)冊答案