【題目】已知四棱柱的所有棱長都為2,且.
(1)證明:平面平面;
(2)求直線與平面所成的角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)要證平面平面,轉(zhuǎn)化為證明平面,通過證明及可得;
(2)連接,由(1)可得為直線與平面所成的角,在中求角的正弦值.另外可以用向量法求線面角.
(1)證明:設(shè)與的交點為,連接,
因為,,,
所以,
所以,
又因為是的中點,所以,
另由且,
所以平面,
而平面,所以平面平面.
(2)(法一)連接,由(1)知平面,
所以為直線與平面所成的角,
在菱形中,,
故,
所以
又因為,所以,
所以.
(法二)過作直線平面,分別以、、為、、軸,建立如圖所示空間直角坐標系,
依題意,得,,,,,
所以,,,
設(shè)平面的法向量為,
所以,令,則,即,
所以,
即直線與平面所成的角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)與的圖像在點處有相同的切線,求的值;
(Ⅱ)當(dāng)時,恒成立,求整數(shù)的最大值;
(Ⅲ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.
(1)求出動點的軌跡的標準方程;
(2)設(shè)動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標軸上),求直線的斜率之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小軍的微信朋友圈參與了“微信運動”,他隨機選取了40位微信好友(女20人,男20人),統(tǒng)計其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個類別(說明:m~n表示大于等于m,小于等于n):A(0~2000步)1人,B(2001~5000步)2人,C(5001~8000步)3人,D(8001~10000步)6人,E(10001步及以上)8人.若某人一天的走路步數(shù)超過8000步被系統(tǒng)認定為“健康型”,否則被系統(tǒng)認定為“進步型”.
(1)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并根據(jù)此判斷能否有95%以上的把握認為“認定類型”與“性別”有關(guān)?
健康型 | 進步型 | 總計 | |
男 | 20 | ||
女 | 20 | ||
總計 | 40 |
(2)從小軍的40位好友中該天走路步數(shù)不超過5000的中隨機抽取3人,若表示抽到的三人分別是x,y,z,試用該表示法列舉出試驗所有可能的結(jié)果.若記“恰好抽到了一位女性好友”為事件A,求事件A的概率.
附:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知定點,點在軸上運動,點在軸上運動,點為坐標平面內(nèi)的動點,且滿足,.
(1)求動點的軌跡的方程;
(2)過曲線第一象限上一點(其中)作切線交直線于點,連結(jié)并延長交直線于點,求當(dāng)面積取最小值時切點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,過點作的異于軸的切線,過點作的異于軸的切線.設(shè)與交于點,記的軌跡為.
(1)求的方程;
(2)已知,在點處的切線交直線于點,過原點與平行的直線交于點.證明:以為直徑的圓截軸的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學(xué)期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)在區(qū)間上的值域為,則稱區(qū)間是函數(shù)的“完美區(qū)間”,另外,定義區(qū)間的“復(fù)區(qū)間長度”為,已知函數(shù),則( )
A.是的一個“完美區(qū)間”
B.是的一個“完美區(qū)間”
C.的所有“完美區(qū)間”的“復(fù)區(qū)間長度”的和為
D.的所有“完美區(qū)間”的“復(fù)區(qū)間長度”的和為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com