(本小題滿分13分)在中,分別是角的對邊,且.
(Ⅰ)求角的大小;
(Ⅱ)當(dāng)時(shí),求面積的最大值,并判斷此時(shí)的形狀.
(Ⅰ). (Ⅱ)為等邊三角形.
解析試題分析:(1)將條件 化簡,結(jié)合A是三角形的內(nèi)角,可求角A的大。
(2)先利用余弦定理得bc≤36,又由于S=bc,故可求面積的最大值,根據(jù)取最大時(shí)b=c及(1)的結(jié)論可知△ABC的形狀.
解: (Ⅰ)由已知有,……………………2分
故,.………………………………4分
又,所以.………………………………6分
(Ⅱ),∴,∴ .
故三角形的面積 .
當(dāng)且僅當(dāng)b=c時(shí)等號成立;又,
故此時(shí)為等邊三角形.………………………………13分
考點(diǎn):本試題主要考查了三角函數(shù)與三角形的結(jié)合,考查三角形的面積公式即基本不等式的運(yùn)用,屬于基礎(chǔ)題.
點(diǎn)評:解決該試題的關(guān)鍵是對于第一問的結(jié)論,能巧妙的結(jié)合余弦定理來得到bc的取值范圍,并求解面積的最大值,以及對應(yīng)的形狀。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,求AB的長;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,A,B是海面上位于東西方向相距海里的兩個(gè)觀測點(diǎn),現(xiàn)位于A點(diǎn)北偏東
45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號,位于B點(diǎn)南偏西60°且與B點(diǎn)相距海里的C點(diǎn)的救援船立即即前往營救,其航行速度為30海里/小時(shí),該救援船到達(dá)D點(diǎn)需要多長時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測站A,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40 n mile的位置B,經(jīng)過40分鐘又測得該船已行駛到點(diǎn)A北偏東 (其中,)且與點(diǎn)A相距10n mile的位置C.
(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進(jìn)入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
攀巖運(yùn)動是一項(xiàng)刺激而危險(xiǎn)的運(yùn)動,如圖(1)在某次攀巖活動中,兩名運(yùn)動員在如圖所在位置,為確保運(yùn)動員的安全,地面救援者應(yīng)時(shí)刻注意兩人離地面的距離,以備發(fā)生危險(xiǎn)時(shí)進(jìn)行及時(shí)救援. 為了方便測量和計(jì)算,畫出示意圖,如圖(2)所示,點(diǎn)分別為兩名攀巖者所在位置,點(diǎn)為山的拐角處,且斜坡AB的坡角為,點(diǎn)為山腳,某人在地面上的點(diǎn)處測得的仰角分別為, ,
求:(Ⅰ)點(diǎn)間的距離及點(diǎn)間的距離;
(Ⅱ)在點(diǎn)處攀巖者距地面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com