【題目】如圖,等腰梯形中, 于點(diǎn), ,且.沿折起到的位置(如圖),使

I)求證: 平面

II)求三棱錐的體積.

III)線段上是否存在點(diǎn),使得平面,若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.

【答案】I)見解析;(II;(III)存在, 中點(diǎn).

【解析】試題分析:)推導(dǎo)出ADAB.從而面ABCD.進(jìn)而CD,再求出ACCD.由此能證明CD平面

(Ⅱ)由VA-P'BC=VP'-ABC,能求出三棱錐A-P'BC的體積.

)取P'A中點(diǎn)M,P'D中點(diǎn)N,連結(jié)BM,MN,NC,推導(dǎo)出四邊形BCNM為平行四邊形,由此能求出存在一點(diǎn)M,M為的中點(diǎn),使得BMCD

試題解析:I,故,

∵在等腰梯形中, ,

∴在四棱錐中, ,

又∵,

平面

平面,

,

∵等腰梯形中,

,

,

, ,

,

,

平面

II

平面,

III)存在點(diǎn), 中點(diǎn),使得平面

證明:取 中點(diǎn)為,

連接, ,

, , 中點(diǎn),

,

,

,

是平行四邊形,

,

,

平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,經(jīng)過(guò)橢圓 的一個(gè)焦點(diǎn)的直線相交于兩點(diǎn), 的中點(diǎn),且斜率是.

()求橢圓的方程;

()直線分別與橢圓和圓 相切于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn),過(guò)右焦點(diǎn)軸不垂直的直線交橢圓于 兩點(diǎn).

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線的斜率為時(shí),求的面積.

Ⅲ)在線段上是否存在點(diǎn),使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的方程為, 為常數(shù)).

(1)判斷曲線的形狀;

(2)設(shè)曲線分別與軸, 軸交于點(diǎn) 不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;

(3)設(shè)直線 與曲線交于不同的兩點(diǎn), ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線l過(guò)點(diǎn)P(-32),傾斜角為,且.曲線C的參數(shù)方程為為參數(shù)).直線l與曲線C交于AB兩點(diǎn),線段AB的中點(diǎn)為M

(Ⅰ)求直線l的參數(shù)方程和曲線C的普通方程;

(Ⅱ)求線段PM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線.

(1)若曲線C在點(diǎn)處的切線為,求實(shí)數(shù)的值;

(2)對(duì)任意實(shí)數(shù),曲線總在直線:的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測(cè)量體重,經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、組中隨機(jī)抽取名學(xué)生做初檢.

)求每組抽取的學(xué)生人數(shù).

)若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點(diǎn)上一點(diǎn)且,證明:平面;

二面角的大小;

在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著高等級(jí)公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場(chǎng)對(duì)100棵“天竺桂”的移栽成活量(單位:棵)與在前三個(gè)月內(nèi)澆水次數(shù)間的關(guān)系進(jìn)行研究,根據(jù)以往的記錄,整理相關(guān)的數(shù)據(jù)信息如圖所示:

(1)結(jié)合圖中前4個(gè)矩形提供的數(shù)據(jù),利用最小二乘法求關(guān)于的回歸直線方程;

(2)用表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計(jì)值,當(dāng)圖中余下的矩形對(duì)應(yīng)的數(shù)據(jù)組的殘差的絕對(duì)值,則回歸直線方程有參考價(jià)值,試問(wèn):(1)中所得到的回歸直線方程有參考價(jià)值嗎?

(3)預(yù)測(cè)100棵“天竺桂”移栽后全部成活時(shí),在前三個(gè)月內(nèi)澆水的最佳次數(shù).

附:回歸直線方程為,其中,

查看答案和解析>>

同步練習(xí)冊(cè)答案