【題目】某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示,已知這100位顧客中一次購物量超過7件的顧客占.

一次購物量

13

47

811

1215

16件及以上

顧客數(shù)(人)

27

20

10

結(jié)算時(shí)間(/人)

0.5

1

1.5

2

2.5

1)確定的值,并求顧客一次購物的結(jié)算時(shí)間的平均值;

2)從收集的結(jié)算時(shí)間不超過的顧客中,按分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人,求至少有1人的結(jié)算時(shí)間為的概率.(注:將頻率視為概率)

【答案】1,;(2

【解析】

1)由條件可得,從而可求出的值,再計(jì)算顧客一次購物的結(jié)算時(shí)間的平均值
2)結(jié)算時(shí)間不超過的顧客有45人,則按分層抽樣抽取5人,從結(jié)算時(shí)間為的人中抽取2人,從結(jié)算時(shí)間為的人中抽取3人,列舉出基本事件數(shù),再列舉出至少有1人結(jié)算時(shí)間為所包含基本事件數(shù),用古典概率可求解.

解:(1)由已知得,∴,

,∴.

該超市所有顧客一次購物的結(jié)算時(shí)間組成一個(gè)總體,
所收集的100位顧客一次購物的結(jié)算時(shí)間可視為總體的一個(gè)容量為100的簡(jiǎn)單隨機(jī)樣本,
顧客一次購物的結(jié)算時(shí)間的平均值可用樣本平均數(shù)估計(jì),
其估計(jì)值為.

2)結(jié)算時(shí)間不超過共有45人,其中結(jié)算時(shí)間為的有18人,
結(jié)算時(shí)間為的有27人,
結(jié)算時(shí)間為的人數(shù):結(jié)算時(shí)間為的人數(shù),
則按分層抽樣抽取5人,從結(jié)算時(shí)間為的人中抽取人,
從結(jié)算時(shí)間為的人中抽取.

記抽取結(jié)算時(shí)間為2人分別為,
抽取結(jié)算時(shí)間為3人分別為,
表示抽取的兩人為,,基本事件共有10個(gè):

,,,
,,.

記至少有1人結(jié)算時(shí)間為為事件,包含基本事件共有7個(gè):

,,,,,,

,故至少有1人結(jié)算時(shí)間為的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式,并證明:.

(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點(diǎn),且線段的中點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,平面外一點(diǎn)在平內(nèi)的射影恰在邊的中點(diǎn)上,

1)求證:平面平面;

2)若在線段上,且平面,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,分別是橢圓的頂點(diǎn).過坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過點(diǎn)軸的垂線,垂足為.設(shè)直線的斜率為.

1)若直線平分線段,求的值;

2)當(dāng)時(shí),求點(diǎn)到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)P(3,﹣4)作圓(x1)2+y22的切線,切點(diǎn)分別為A,B,則直線AB的方程為(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校命制了一套調(diào)查問卷(試卷滿分均為100分),并對(duì)整個(gè)學(xué)校的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生的成績(jī)中隨機(jī)抽取了50名學(xué)生的成績(jī),按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).

1)求頻率分布直方圖中x的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)用樣本估計(jì)總體,若該校共有2000名學(xué)生,試估計(jì)該校這次測(cè)試成績(jī)不低于70分的人數(shù);

3)若利用分層抽樣的方法從樣本中成績(jī)不低于70分的學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人,試求成績(jī)?cè)?/span>的學(xué)生至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,,平面,點(diǎn)在棱.

1)求證:平面平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線lE交于AB兩點(diǎn).當(dāng)l過點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案