【題目】設(shè)橢圓的左、右頂點分別為,,且左、右焦點與短軸的一個端點是等邊三角形的三個頂點,點在橢圓上,過點的直線交橢圓于軸上方的點,交直線于點.直線與橢圓的另一交點為,直線與直線交于點.
(1)求橢圓的標準方程;
(2)若,試求直線的方程;
(3)如果,試求的取值范圍.
【答案】(1)(2)(3)
【解析】
(1)由題意得到關(guān)于a,b,c的方程組,求解方程組可得橢圓方程;
(2)由題意首先求得點D的坐標,進一步求得點G的坐標,由直線垂直的充分必要條件可得直線的斜率,據(jù)此即可求得直線方程;
(3)由題意,聯(lián)立方程求得點H,點P的坐標,然后利用向量的坐標運算得到關(guān)于直線斜率k的表達式,最后由函數(shù)的單調(diào)性可得的取值范圍.
(1)由定義,解得:.
橢圓方程為. ①
(2)設(shè)直線, ②
則與直線的交點.
又,所以設(shè)直線,
由解得,
則直線得斜率為,③
因為,故,又,解得,
則直線得方程為.
(3)由(2)中③知,設(shè)直線
由解得,
聯(lián)立①②,解得,
因為,所以,則,
,
因為在為減函數(shù),所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面垂直于和,是棱的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在一點使得與平面所成角的正弦值為若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取100個,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設(shè)甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較與的大小;(只需寫出結(jié)論)
(2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;
(3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】銀川市展覽館22天中每天進館參觀的人數(shù)如下:
180 158 170 185 189 180 184 185 140 179 192
185 190 165 182 170 190 183 175 180 185 148
計算參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù)、標準差(保留整數(shù)部分).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),在上是增函數(shù),且,給出下列結(jié)論,
①若且,則;
②若且,則;
③若方程在內(nèi)恰有四個不同的實根, , , ,則或8;
④函數(shù)在內(nèi)至少有5個零點,至多有13個零點.
其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若在點處的切線與軸平行,且在區(qū)間上存在最大值,求實數(shù)的取值范圍;
(Ⅱ)當時,求不等式恒成立時的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)已知是函數(shù)的一個極值點.
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com