【題目】已知函數(shù)的最小值為其中.

(1)的值;

(2)若對任意的,有成立,求實數(shù)的范圍;

(3)證明:

【答案】(1)a=1;(2) ;(3)證明見解析.

【解析】試題分析; 1)對 進行求導,已知最小值為0,可得極小值也為0,得 ,從而求出的值;
2)由題意任意的 ,有 成立,可以令 求出 的最大值小于0即可,可以利用導數(shù)研究的最值;

(3)由(2)知:令得:

得: ,累加即可的證

試題解析;(1)函數(shù)的定義域為.

得: 又由得:

單調(diào)遞減,在單調(diào)遞增

(2)設 ,則恒成立 (*)

注意到

>0 ……5分

①當<0 )時,由.

單減, 單增,這與(*)式矛盾;

②當

恒成立 ∴符合(*)

(3)由(2)知:令得:

得:

i=1時, <2;

時,

從而<2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.求移栽的4株大樹中:

(1)兩種大樹各成活1株的概率;

(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為其導函數(shù).

(1) 設,求函數(shù)的單調(diào)區(qū)間;

(2) 若, 設, 為函數(shù)圖象上不同的兩點,且滿足,設線段中點的橫坐標為 證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, 是棱上的一個動點, 的中點.

(Ⅰ)求證:平面平面

(Ⅱ)若,求證: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)若的圖象與的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )

A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(數(shù)學文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得到如圖頻率分布直方圖:

(Ⅰ)求直方圖中的值;

(Ⅱ)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.

參考數(shù)據(jù):若,則,

(Ⅲ)設生產(chǎn)成本為,質(zhì)量指標為,生產(chǎn)成本與質(zhì)量指標之間滿足函數(shù)關(guān)系假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,試計算生產(chǎn)該食品的平均成本.

查看答案和解析>>

同步練習冊答案