已知函數(shù)是不為零的實(shí)數(shù),為自然對數(shù)的底數(shù)).
(1)若曲線有公共點(diǎn),且在它們的某一公共點(diǎn)處有共同的切線,求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時(shí)k的取值范圍.

(1)
(2)當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞減.

解析試題分析:(1)設(shè)曲線有共同切線的公共點(diǎn)為,
.     1分
又曲線在點(diǎn)處有共同切線,
,  2分
,                      3分
解得 .                           4分
(2)由得函數(shù),
所以                     5分

.               6分
又由區(qū)間知,,解得,或.                     7分
①當(dāng)時(shí),由,得,即函數(shù)的單調(diào)減區(qū)間為,                      8分
要使得函數(shù)在區(qū)間內(nèi)單調(diào)遞減,
則有                           9分
解得.                  10分
②當(dāng)時(shí),由,得,或,即函數(shù)的單調(diào)減區(qū)間為,             11分
要使得函數(shù)在區(qū)間內(nèi)單調(diào)遞減,
則有,或,                   12分
這兩個(gè)不等式組均無解.                        13分
綜上,當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞減.  14分
考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極(最值)值。
點(diǎn)評:難題,本題屬于導(dǎo)數(shù)內(nèi)容中的基本問題,(1)運(yùn)用“函數(shù)在某點(diǎn)的切線斜率,就是該點(diǎn)的導(dǎo)數(shù)值”,確定直線的斜率。通過研究導(dǎo)數(shù)值的正負(fù)情況,明確函數(shù)的單調(diào)區(qū)間。確定函數(shù)的最值,往往遵循“求導(dǎo)數(shù),求駐點(diǎn),計(jì)算極值、端點(diǎn)函數(shù)值,比較大小確定最值”。本題較難,主要是涉及參數(shù)K的分類討論,不易把握。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù)a、b、c,使同時(shí)滿足下列三個(gè)條件:(1)定義域?yàn)镽的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1)對于函數(shù),當(dāng)時(shí),,求實(shí)數(shù)的取值集合;
(2)當(dāng)時(shí),的值為負(fù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中e為自然對數(shù)的底數(shù),且當(dāng)x>0時(shí)恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實(shí)數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值,且恰好是的一個(gè)零點(diǎn).
(Ⅰ)求實(shí)數(shù)的值,并寫出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)、分別是曲線在點(diǎn)(其中)處的切線,且
①若的傾斜角互補(bǔ),求的值;
②若(其中是自然對數(shù)的底數(shù)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若函數(shù)圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)的軌跡恰好是函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)當(dāng)時(shí)總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)對于任意實(shí)數(shù)x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式|x-3|-2x≤2m-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若曲線在點(diǎn)處與直線相切,求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn).
(3)設(shè)函數(shù)的導(dǎo)函數(shù)是,當(dāng)時(shí)求證:對任意成立

查看答案和解析>>

同步練習(xí)冊答案