【題目】設(shè)函數(shù)

(I)討論的單調(diào)性;

II)若有兩個(gè)極值點(diǎn),記過(guò)點(diǎn)的直線的斜率為,問(wèn):是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

【答案】:(I的定義域?yàn)?/span>

當(dāng)上單調(diào)遞增.

當(dāng)的兩根都小于0,在上,,故上單調(diào)遞增.

當(dāng)的兩根為,

當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,故分別在上單調(diào)遞增,在上單調(diào)遞減.

II)由(I)知,

因?yàn)?/span>,所以

又由(I)知,.于是

若存在,使得.即.亦即

再由(I)知,函數(shù)上單調(diào)遞增,而,所以這與式矛盾.故不存在,使得

【解析】

試題分析】(1)先對(duì)函數(shù)求導(dǎo),再運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系分析討論函數(shù)的符號(hào),進(jìn)而運(yùn)用分類整合思想對(duì)實(shí)數(shù)進(jìn)行分三類進(jìn)行討論并判定其單調(diào)性,求出單調(diào)區(qū)間;(2)先假設(shè)滿足題設(shè)條件的參數(shù)存在,再借助題設(shè)條件,推得,即,亦即

進(jìn)而轉(zhuǎn)化為判定函數(shù)上是單調(diào)遞增的問(wèn)題,然后借助導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系運(yùn)用反證法進(jìn)行分析推證,從而作出判斷:

解:(Ⅰ)定義域?yàn)?/span>,

,

①當(dāng)時(shí),,故上單調(diào)遞增,

②當(dāng)時(shí),,的兩根都小于零,在上,,

上單調(diào)遞增,

③當(dāng)時(shí),,的兩根為,

當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;

分別在上單調(diào)遞增,在上單調(diào)遞減.

(Ⅱ)由(Ⅰ)知,,

因?yàn)?/span>.

所以,

又由(1)知,,于是,

若存在,使得,則,即

亦即

再由(Ⅰ)知,函數(shù)上單調(diào)遞增,

,所以,這與()式矛盾,

故不存在,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=|3x4||x+1|

1)解不等式fx)>5;

2)若存在實(shí)數(shù)x滿足ax+afx)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.

1)求橢圓的方程;

2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),假設(shè)(其中為坐標(biāo)原點(diǎn))

1)求橢圓的方程;

2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(為直徑的兩個(gè)端點(diǎn)),求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,,平面PAB,D,E分別是ACBC上的點(diǎn),且平面PAB.

1)求證平面PDE;

2)若D為線段AC中點(diǎn),求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若函數(shù)4個(gè)不同的零點(diǎn),且,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個(gè)平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE;

2)若AB2,求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)gx)=bx1),其中a≠0b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案