【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同的兩點,且的中點為,線段的垂直平分線為,直線與軸交于點,求的取值范圍.
【答案】(1)(2)
【解析】
(1)先求解A點坐標,代入橢圓方程,結(jié)合離心率為,即得解.
(2)設(shè),,利用點差法得到,得到直線的方程為,得到,利用在橢圓內(nèi)部得到范圍,即得解.
(1)不妨取第一象限的交點為.
由橢圓將圓的圓周分為四等份,知.
所以.
因為點在橢圓上,所以.①
因為,所以.②
①②聯(lián)立,解得,.
所以橢圓的方程為.
(2)設(shè),,則
兩式相減,得.
又因的中點為,所以,.
所以直線的斜率.
當時,直線的方程,直線即軸,此時.
當時,直線的斜率.
所以直線的方程為,即.
令,則.
因為點在橢圓內(nèi)部,所以.
所以,所以.
綜上所述,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2為橢圓E:y2=1的左、右焦點,過點P(﹣2,0)的直線l與橢圓E有且只有一個交點T.
(1)求△F1TF2的面積;
(2)求證:光線被直線反射后經(jīng)過F2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線的極坐標方程為.
Ⅰ寫出的普通方程和的直角坐標方程;
Ⅱ若與相交于A,B兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,且.點是線段上一點,且.
(1)求證:平面平面.
(2)若,在線段上是否存在一點,使得到平面的距離為?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個焦點分別為和,短軸的兩個端點分別為和,點在橢圓上,且滿足,當變化時,給出下列三個命題:
①點的軌跡關(guān)于軸對稱;②的最小值為2;
③存在使得橢圓上滿足條件的點僅有兩個,
其中,所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:.其中稱為數(shù)組的“元”,稱為的下標,如果數(shù)組中的每個“元”都是來自數(shù)組中不同下標的“元”,則稱為的子數(shù)組.定義兩個數(shù)組,的關(guān)系數(shù)為.
(1)若,,設(shè)是的含有兩個“元”的子數(shù)組,求的最大值;
(2)若,,且,為的含有三個“元”的子數(shù)組,求的最大值;
(3)若數(shù)組中的“元”滿足,設(shè)數(shù)組含有四個“元”,且,求與的所有含有三個“元”的子數(shù)組的關(guān)系數(shù)()的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某投資公司在2010年年初準備將1000萬元投資到“低碳”項目上,現(xiàn)有兩個項目供選擇:
項目一:新能源汽車.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為和;
項目二:通信設(shè)備.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,可能虧損,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、和
(Ⅰ)針對以上兩個投資項目,請你為投資公司選擇一個合理的項目,并說明理由;
(Ⅱ)若市場預(yù)期不變,該投資公司按照你選擇的項目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?
(參考數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com