精英家教網 > 高中數學 > 題目詳情

【題目】橢圓的離心率為,其左焦點到點的距離為,不過原點O的直線C交于A,B兩點,且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時直線l的方程.

【答案】1;(2;(3.

【解析】

1)利用兩點間的距離公式以及離心率求出,再由,即可求解.

2)設,由,消元利用韋達定理求得線段的中點,再根據線段的中點上,可求出解.

3)由(2)求出,到直線的距離,即可求得的面積,從而問題得解.

1)由題意可得,解得,

橢圓C的方程.

2)設,由直線不過原點,可得.

,消元可得①,

,

線段的中點

上,易知直線的解析式為

,.

3)由(2),將化為,

直線與橢圓相交,

,

,

到直線的距離,

的面積

,

,

,取得最大值,即取得最大值,

所求直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2aln x.

(1)當a=1時,求函數f′(x)的最小值;

(2)求函數f(x)的單調區(qū)間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,的內切圓于邊、、分別切于點、,、、的中點分別為、、、,交于點。證明:的外接圓與的內切圓相切。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科技公司新研制生產一種特殊疫苗,為確保疫苗質量,定期進行質量檢驗.某次檢驗中,從產品中隨機抽取100件作為樣本,測量產品質量體系中某項指標值,根據測量結果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術分析人員認為,本次測量的該產品的質量指標值X服從正態(tài)分布,若同組中的每個數據用該組區(qū)間的中間值代替,計算,并計算測量數據落在(187.8,212.2)內的概率;

(3)設生產成本為y元,質量指標值為,生產成本與質量指標值之間滿足函數關系假設同組中的每個數據用該組區(qū)間的中間值代替,試計算生產該疫苗的平均成本.

參考數據:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[2019·開封一模]已知數列中,,,利用下面程序框圖計算該數列的項時,若輸出的是2,則判斷框內的條件不可能是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系xOy中,曲線C1的普通方程為,曲線C2參數方程為為參數),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為

(1)求C1的參數方程和的直角坐標方程;

(2)已知P是C2上參數對應的點,Q為C1上的點,求PQ中點M到直線的距離取得最大值時,點Q的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查某大學學生在某天上網的時間,隨機對100名男生和100名女生進行了不記名的問卷調查. 得到如下的統(tǒng)計結果.

1:男生上網時間與頻數分布表:

上網時間(分鐘)

人數

10

20

40

20

10

2:女生上網時間與頻數分布表:

上網時間(分鐘)

人數

5

25

30

25

15

完成下面的2×2列聯表,并回答能否有90%的把握認為“大學生上網時間與性別有關”?

附:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知五邊形ABECD由一個直角梯形和一個等邊三角形構成(如圖1所示),.將梯形沿著折起(如圖2所示),點的中點,平面

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若,,證明:.

查看答案和解析>>

同步練習冊答案