【題目】下列說法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標系中,函數(shù)與的圖象關(guān)于軸對稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
【答案】B
【解析】
由逆否命題的真假可判斷A,,判斷點在函數(shù)圖象上時,是否有在函數(shù)的圖象上可判斷B,由特稱命題的否定判斷C,解不等式可知兩條件的關(guān)系.
對于A,判斷命題“,若,則且”是否為真命題,可以通過判斷其逆否命題:“,若或,則”為假命題,知原命題為假命題;
對于B,在同一坐標系中,若點在函數(shù)圖象上,則有在函數(shù)的圖象上,所以函數(shù)與的圖象關(guān)于軸對稱正確;
對于C,由于特稱命題的否定為全稱命題,所以命題“,使得”的否定是“,都有”,所以C不正確;
對于D,由,可得或,所以“”是“”的必要不充分條件,所以D不正確.
故選B.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)設(shè)直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標系中,函數(shù)與的圖象關(guān)于軸對稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)過橢圓左焦點的直線與橢圓交于兩點,直線過坐標原點且直線與的斜率互為相反數(shù),直線與橢圓交于兩點且均不與點重合,設(shè)直線的斜率為,直線的斜率為.證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足:a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)通過公式bn=構(gòu)造一個新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;
(3)對于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:
①數(shù)列,,,,…的一個通項公式是;
②當時,不等式對一切實數(shù)x都成立;
③函數(shù)是周期為的奇函數(shù);
④兩兩相交且不過同一點的三條直線必在同一個平面內(nèi).
其中,正確說法序號是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com