(Ⅰ)設(shè)是定義在實數(shù)集R上的函數(shù),滿足,且對任意實數(shù)a,b有;
(Ⅱ)設(shè)函數(shù)滿足

(1);(2)。

解析試題分析:(1)解:令a=x,b=x

(2)解:

考點:本題主要考查函數(shù)解析式的求法。
點評:中檔題,求函數(shù)的解析式往往有“待定系數(shù)法”,換元法,定義法,“消去法”等。(2)采用的是“消去法”。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某海邊旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(Ⅰ)求函數(shù)的解析式及其定義域;
(Ⅱ)試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某醫(yī)藥研究所開發(fā)一種新藥,在實驗藥效時發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量(微克)與時間(小時)之間滿足,
其對應(yīng)曲線(如圖所示)過點.

(1)試求藥量峰值(的最大值)與達(dá)峰時間(取最大值時對應(yīng)的值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間?(精確到0.01小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 是定義在  上的增函數(shù),且對任意的都滿足 .
(Ⅰ)求的值;   (Ⅱ)若,證明
(Ⅲ)若,解不等式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場售價與上市時間的關(guān)系用圖1的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖2的拋物線表示.
(1)寫出圖1表示的市場售價與時間的函數(shù)關(guān)系式;寫出圖2表示的種植成本與時間的函數(shù)關(guān)系式
(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

(注:市場售價和種植成本的單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
(1)
(2)已知,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的定義域為,對任意的實數(shù)都有;當(dāng)時,,且.(1)判斷并證明上的單調(diào)性;
(2)若數(shù)列滿足:,且,證明:對任意的,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)設(shè)函數(shù)滿足:都有,且時,取極小值
(1)的解析式;
(2)當(dāng)時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設(shè), 當(dāng)時,求函數(shù)的最小值,并指出當(dāng)取最小值時相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
(本小題滿分12分)某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計能使S取得最大值,最大值為多少?

查看答案和解析>>

同步練習(xí)冊答案