【題目】在的三個內(nèi)角的對邊分別為,已知向量,且.
(Ⅰ)求角的值;
(Ⅱ)若,求邊的最小值.
(Ⅲ)已知,求的值.
【答案】(Ⅰ)(Ⅱ).(Ⅲ)
【解析】
(Ⅰ)根據(jù)平面向量平行的坐標關(guān)系,代入后由正弦定理化簡,結(jié)合輔助角公式即可求得角的值.
(Ⅱ)根據(jù)平面向量數(shù)量積定義,結(jié)合余弦定理及基本不等式,即可求得邊的最小值.
(Ⅲ)根據(jù)正弦定理,先求得,由同角三角函數(shù)關(guān)系式求得.結(jié)合二倍角公式即可求得,由同角三角函數(shù)關(guān)系式求得.利用正弦差角公式展開,再代入即可求得的值.
(Ⅰ)因為,
所以,
所以由正弦定理和誘導公式可得
因為,所以,
所以,
所以,又,
所以.
(Ⅱ)因為,所以,
所以,所以,
由余弦定理可得12,
當且僅當時等號成立
所以,即的最小值為.
(Ⅲ)由正弦定理可得
,
為銳角
科目:高中數(shù)學 來源: 題型:
【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對角線BD折疊,使(如圖2).請在圖2中解答下列問題.
(1)證明:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】德國數(shù)學家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第6項為1(注:1可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )
A.3B.4C.5D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1an=0(n∈N*),且,,成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一種候鳥每年都按一定的路線遷陟,飛往繁殖地產(chǎn)卵.科學家經(jīng)過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,,)
(1)若,候鳥每分鐘的耗氧量為個單位時,它的飛行速度是多少?
(2)若,候鳥停下休息時,它每分鐘的耗氧量為多少個單位?
(3)若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的多少倍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點到焦點F的距離為.
(1)求拋物線的方程;
(2)若直線與拋物線C相交于A,B兩點,與圓相交于D,E兩點,O為坐標原點,,試問:是否存在實數(shù)a,使得|DE|的長為定值?若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法不正確的是( )
A. “弦”米,“矢”米
B. 按照經(jīng)驗公式計算所得弧田面積()平方米
C. 按照弓形的面積計算實際面積為()平方米
D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com