【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對(duì)角線(xiàn)BD折疊,使(如圖2).請(qǐng)?jiān)趫D2中解答下列問(wèn)題.
(1)證明:;
(2)求三棱錐的高.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)在圖1中,根據(jù)平面幾何知識(shí)可得BC=1且∠CBD=90°,在圖2中可以得到AC2=AB2+CB2,從而可證明BC⊥平面ABD從而可證明結(jié)論.
(2)由(1)有,用等體積法有.
證明:法1:由左圖知,
在△BDC中,∠CBD=135°-45°=90°,
∠BDC=75°-45°=30°,
,所以BC=1,
又在右圖中,因?yàn)?/span>AC,AB=AD,所以AC2=AB2+CB2
所以BC⊥AB
又因?yàn)椤?/span>CBD=90°,所以BC⊥平面ABD
所以BC⊥AD
法2:如右圖,設(shè)BD的中點(diǎn)為O,連結(jié)A0,CO,因?yàn)椤?/span>A=90°,AB=AD
則
由左圖知,在△BDC中,∠CBD=135°-45°=90°
∠BDC=75°-45°=30°,所以BC=1,所以
又因?yàn)?/span>AC,所以AC2=AO2+CO2
所以AO⊥CO,所以AO⊥平面BCD,所以平面ABD⊥平面BCD,又∠CBD=90°
所以BC⊥平面ABD, 所以BC⊥AD
(2)因?yàn)?/span>AB=AD,AC,CD2=BC2+BD2=4
所以CD2=AC2+AD2,所以AC⊥AD
設(shè)三棱錐B-ADC的高為h,則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體是一個(gè)棱長(zhǎng)為2的空心蔬菜大棚,由8個(gè)鋼結(jié)構(gòu)(地面沒(méi)有)組合搭建而成的,四個(gè)側(cè)面及頂上均被可采光的薄膜覆蓋,已知為柱上一點(diǎn)(不在點(diǎn)、處),(),菜農(nóng)需要在地面正方形內(nèi)畫(huà)出一條曲線(xiàn)將菜地分隔為兩個(gè)不同的區(qū)域來(lái)種植不同品種的蔬菜以加強(qiáng)管理,現(xiàn)已知點(diǎn)為地面正方形內(nèi)的曲線(xiàn)上任意一點(diǎn),設(shè)、分別為在點(diǎn)處觀(guān)測(cè)和的仰角.
(1)若,請(qǐng)說(shuō)明曲線(xiàn)是何種曲線(xiàn),為什么?
(2)若為柱的中點(diǎn),且時(shí),請(qǐng)求出點(diǎn)所在區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是拋物線(xiàn):的焦點(diǎn),動(dòng)直線(xiàn)過(guò)點(diǎn)且與拋物線(xiàn)相交于,兩點(diǎn).當(dāng)直線(xiàn)變化時(shí),的最小值為4.
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn),分別作拋物線(xiàn)的切線(xiàn),,與相交于點(diǎn),,與軸分別交于點(diǎn),,求證:與的面積之比為定值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)P、M、N分別是正方體的棱,AD,AB上非頂點(diǎn)的任意點(diǎn).
①的外心必在的某一邊上;
②的外心必在的內(nèi)部;
③的垂心必是點(diǎn)A在平面PMN上的射影;
④若線(xiàn)段AP、AM、AN的長(zhǎng)分別為a、b、c,則.其中( ).
A. 只有①、④正確.
B. 只有③、④正確.
C. 只有②、③、④正確.
D. 只有②、③正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面,,.
(Ⅰ)求證:平面;
(Ⅱ)若,,且與平面所成的角為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)討論函數(shù)的單凋性;
(2)若存在使得對(duì)任意的不等式(其中e為自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開(kāi)展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對(duì)200名學(xué)生做了問(wèn)卷調(diào)查,列聯(lián)表如下:
參加文體活動(dòng) | 不參加文體活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 80 | ||
學(xué)習(xí)積極性不高 | 60 | ||
合計(jì) | 200 |
已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請(qǐng)說(shuō)明你的理由;
(3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再?gòu)乃x出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在的三個(gè)內(nèi)角的對(duì)邊分別為,已知向量,且.
(Ⅰ)求角的值;
(Ⅱ)若,求邊的最小值.
(Ⅲ)已知,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com