【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法不正確的是( )
A. “弦”米,“矢”米
B. 按照經(jīng)驗公式計算所得弧田面積()平方米
C. 按照弓形的面積計算實際面積為()平方米
D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為正方形,側(cè)棱底面ABCD,且,E,F,H分別是線段PA,PD,AB的中點.
(1)求證:平面EFH;
(2)求證:平面AHF;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,對任意實數(shù)x,y滿足f(x+y)=f(x)+f(y)+,且f()=0,當(dāng)x>時,f(x)>0.給出以下結(jié)論
①f(0)=-
②f(-1)=-
③f(x)為R上減函數(shù)
④f(x)+為奇函數(shù);
⑤f(x)+1為偶函數(shù)
其中正確結(jié)論的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=x+a沒有交點,求a的取值范圍;
(3)若函數(shù)h(x)=+m2x-1,x∈[0,log23],是否存在實數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線,給出下列四個結(jié)論:①曲線是橢圓;②關(guān)于坐標(biāo)原點中心對稱;③關(guān)于直線軸對稱;④所圍成封閉圖形面積小于8.則其中正確結(jié)論的序號是( )
A. ②④ B. ②③④ C. ①②③④ D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(Ⅰ)證明:平面A1BD∥平面CD1B1;
(Ⅱ)求三棱柱ABD﹣A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com