精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求異面直線PC與AB所成角的余弦值;
(Ⅲ)在側棱PA上是否存在一點E,使得平面CDE與平面ADC所成角的余弦值是
2
3
,若存在,求出AE的長;若不存在,說明理由.
(Ⅰ)證明:∵底面ABCD是梯形,ADBC,∠DAB=90°,
∴BC⊥AB
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC,
∵PA∩AB=A,
∴BC⊥平面PAB;
(Ⅱ)以A為原點,分別以AD,AB,AP所在直線x,y,z軸建立空間直角坐標系.

∴A(0,0,0),D(1,0,0),B(0,2,0),C(2,2,0),P(0,0,2).
PC
=(2,2,-2)
,
AB
=(0,2,0)

∴cos
PC
,
AB
=
PC
AB
|
PC
||
AB
|
=
4
4
3
=
3
3

∴異面直線PC與AB所成角的余弦值是
3
3
…(8分)
(Ⅲ)假設在側棱PA上存在一點E,使得平面CDE與平面ADC所成角的余弦值是
2
3
,
設E(0,0,m)(m>0),∴
DC
=(1,2,0),
DE
=(-1,0,m)
,
∴設平面CDE的法向量為
n
=(x,y,z)

n
DC
=0,
n
DE
=0
,
x+2y=0
-x+mz=0

令x=2,所以y=-1,z=
2
m
,∴
n
=(2,-1,
2
m
)

又∵平面ACD的法向量為
AP
=(0,0,2)
,
∴cos
n
,
AP
=
n
AP
|
n
||
AP
|
=
4
m
5+
4
m2
×2
=
2
3
,∴m=1
∴點E的坐標是(0,0,1).
∴在側棱PA上存在一點E(0,0,1),使得平面CDE與平面ADC所成角的余弦值是
2
3
.…(14分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

設兩不同直線a,b的方向向量分別是
e1
e2
,平面α的法向量是
n
,
則下列推理①
e1
e2
e1
n
⇒bα
;②
e1
n
e1
n
⇒ab
;③
e1
n
b?α
e1
e2
⇒bα
;④
e1
e2
e1
n
⇒b⊥α
;
其中正確的命題序號是( 。
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,側面PAD⊥底面ABCD,∠BCD=60°,PA=PD=
2
,E是BC中點,點Q在側棱PC上.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)若Q是PC中點,求二面角E-DQ-C的余弦值;
(Ⅲ)若
PQ
PC
,當PA平面DEQ時,求λ的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為線段CD中點.
(1)求直線B1E與直線AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A_
1
的大。
(3)在棱AA1上是否存在一點P,使得DP平面B1AE?若存在,求AP的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在底面是正方形的四棱錐P-ABCD中,PA=AB=1,PB=PD=
2
,點E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在棱PC上是否存在一點F,使得BF平面ACE.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB=BC,∠ABC=120°,Q是AC上的點,AB1平面BC1Q.
(Ⅰ)確定點Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為
2
4
,求二面角Q-BC1-C的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長為2,P是底面A1B1C1D1的中心,M是CD的中點,則P到平面AMD1的距離為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2014·龍巖質檢]已知向量a=(1,-1),b=(1,2),向量c滿足(c+b)⊥a,(c-a)∥b,則c=(  )
A.(2,1)B.(1,0)C.(,)D.(0,-1)

查看答案和解析>>

同步練習冊答案