【題目】預計某地區(qū)明年從年初開始的前 個月內(nèi),對某種商品的需求總量 (萬件)近似滿足: ,且
(1)寫出明年第 個月的需求量 (萬件)與月份 的函數(shù)關(guān)系式,并求出哪個月份的需求量超過 萬件;
(2)如果將該商品每月都投放到該地區(qū) 萬件(不包含積壓商品),要保證每月都滿足供應, 應至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)

【答案】
(1) 時, (萬件)

當 時,

且 .

由 即

化簡得 ,解得 .

又 , .

答:第 月份的需求量超過 萬件.


(2)保證每月都滿足供應,則 對于 , 恒成立

時 取最大值

答:每月至少應投放 萬件.


【解析】分析:(1)利用 導出 的解析式,再解不等式 . (2)關(guān)鍵列出關(guān)系式 對于 , 恒成立,即 , , ,都成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), (其中, ),且函數(shù)的圖象在點處的切線與函數(shù)的圖象在點處的切線重合.

(1)求實數(shù), 的值;

(2)記函數(shù),是否存在最小的正常數(shù),使得當時,對于任意正實數(shù),不等式恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=n2﹣n,數(shù)列{bn}的前n項和Tn=4﹣bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn= anbn , 求數(shù)列{cn}的前n項和Rn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長;
(2)求cos(A﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,為側(cè)棱上的點.

1)求證:

2)若平面,求二面角的大。

3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當 時,不等式 恒成立,則實數(shù)a的取值范圍是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直三棱柱中, , 的中點, 的中點.

(1)求證: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線和定點, 是此曲線的左、右焦點,以原點為極點,以軸正半軸為極軸,建立極坐標系.

(1)求直線的極坐標方程;

(2)經(jīng)過點且與直線垂直的直線交此圓錐曲線于兩點,求的值.

查看答案和解析>>

同步練習冊答案