【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線和定點(diǎn) 是此曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線的極坐標(biāo)方程;

(2)經(jīng)過點(diǎn)且與直線垂直的直線交此圓錐曲線于兩點(diǎn),求的值.

【答案】12

【解析】試題分析:(1由圓錐曲線化為,可得,利用截距式即可得出直線的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可;(2直線的斜率為,可得直線的斜率為直線的方程為代入橢圓的方程為, ,利用直線參數(shù)方程的幾何意義及韋達(dá)定理可得結(jié)果.

試題解析:(1)曲線可化為其軌跡為橢圓,焦點(diǎn)為,經(jīng)過的直線方程為

所以極坐標(biāo)方程為

2)由(1)知直線的斜率為,因?yàn)?/span>,所以的斜率為,傾斜角為,所以的參數(shù)方程為代入橢圓的方程中,得

因?yàn)辄c(diǎn)兩側(cè),所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】預(yù)計(jì)某地區(qū)明年從年初開始的前 個(gè)月內(nèi),對(duì)某種商品的需求總量 (萬件)近似滿足: ,且
(1)寫出明年第 個(gè)月的需求量 (萬件)與月份 的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過 萬件;
(2)如果將該商品每月都投放到該地區(qū) 萬件(不包含積壓商品),要保證每月都滿足供應(yīng), 應(yīng)至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象(

A.向右平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向左平移 個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對(duì)任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對(duì)一些對(duì)數(shù)進(jìn)行運(yùn)算,如圖表格所示:

x

0.21

0.27

1.5

2.8

lgx

2a+b+c﹣3(1)

6a﹣3b﹣2(2)

3a﹣b+c(3)

1﹣2a+2b﹣c(4)

x

3

5

6

7

lgx

2a﹣b(5)

a+c(6)

1+a﹣b﹣c(7)

2(a+c)(8)

x

8

9

14

lgx

3﹣3a﹣3c(9)

4a﹣2b(10)

1﹣a+2b(11)

現(xiàn)在發(fā)覺學(xué)生計(jì)算中恰好有兩次地方出錯(cuò),那么出錯(cuò)的數(shù)據(jù)是(
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=(1﹣x2)(x2+ax+b)的圖象關(guān)于直線x=﹣2對(duì)稱,則f(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,2,3,4這4個(gè)數(shù)中,不放回地任意取兩個(gè)數(shù),兩個(gè)數(shù)都是奇數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案