已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為.
(Ⅰ)求動(dòng)點(diǎn)軌跡的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

(Ⅰ);(Ⅱ)證明過(guò)程詳見解析.

解析試題分析:本題考查橢圓的基本量間的關(guān)系及韋達(dá)定理的應(yīng)用.第一問(wèn)是考查橢圓的基本量間的關(guān)系,比較簡(jiǎn)單;第二問(wèn)是直線與橢圓相交于兩點(diǎn),先設(shè)出兩點(diǎn)坐標(biāo),本題的突破口是在消參后的方程中找出兩根之和、兩根之積,整理斜率的表達(dá)式,但是在本問(wèn)中需考慮直線的斜率是否存在,此題中蘊(yùn)含了分類討論的思想的應(yīng)用.
試題解析:(Ⅰ)由橢圓定義,可知點(diǎn)的軌跡是以為焦點(diǎn),以為長(zhǎng)軸長(zhǎng)的橢圓.
,得.故曲線的方程為.        5分
(Ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)其方程為
,得.     7分
設(shè),
從而.                                                                                 11分
當(dāng)直線的斜率不存在時(shí),得

綜上,恒有.                                              12分
考點(diǎn):1.三角形面積公式;2.余弦定理;3.韋達(dá)定理;4.橢圓的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為.
(I)求橢圓的方程;  
(II)過(guò)左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若三角形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為,過(guò)任作直線(軸不平行)交拋物線分別于兩點(diǎn),點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為,

(1)求證:直線軸交點(diǎn)必為定點(diǎn);
(2)過(guò)分別作拋物線的切線,兩條切線交于,求的最小值,并求當(dāng)取最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓經(jīng)過(guò)點(diǎn)離心率,直線的方程為.

(Ⅰ)求橢圓的方程;
(Ⅱ)是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為問(wèn):是否存在常數(shù),使得若存在求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線上,A,C關(guān)于軸對(duì)稱,BD平行于拋物線在點(diǎn)C處的切線。
(Ⅰ)證明:AC平分
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案