已知拋物線的焦點(diǎn)為,過任作直線(軸不平行)交拋物線分別于兩點(diǎn),點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為,

(1)求證:直線軸交點(diǎn)必為定點(diǎn);
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當(dāng)取最小值時(shí)直線的方程.

(1)通過確定直線的方程,證明直線軸交于定點(diǎn).
(2).

解析試題分析:(1)通過確定直線的方程,證明直線軸交于定點(diǎn).
(2)應(yīng)用導(dǎo)數(shù)的幾何意義,確定過點(diǎn)及過點(diǎn)的切線方程并聯(lián)立方程組,確定,,
進(jìn)一步應(yīng)用“弦長公式”及均值定理,建立的方程,確定得到,從而求得直線的方程為:.
試題解析:設(shè),∵拋物線的焦點(diǎn)為

∴可設(shè)直線的方程為:
,消去并整理得:
  4分
,
直線的方程為
∴直線軸交于定點(diǎn)    7分
(2),∴過點(diǎn)的切線方程為:
即:③,同理可得過點(diǎn)的切線方程為:
④  9分
③—④得:()

③+④得:
  12分
,

,取等號(hào)時(shí),
直線的方程為:.  15分
考點(diǎn):直線與拋物線的位置關(guān)系,導(dǎo)數(shù)的幾何意義,均值定理的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫出的方程;
(2)若點(diǎn)在第一象限,證明當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次記為,如果線段的長按此順序構(gòu)成一個(gè)等差數(shù)列,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為.
(Ⅰ)求動(dòng)點(diǎn)軌跡的方程;
(Ⅱ)設(shè),過點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線為,離心率為.若直線與橢圓交于不同的兩點(diǎn)、,以線段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸兩端點(diǎn)分別為是橢圓上的動(dòng)點(diǎn),以為一邊在軸下方作矩形,使,于點(diǎn),于點(diǎn)

(Ⅰ)如圖(1),若,且為橢圓上頂點(diǎn)時(shí),的面積為12,點(diǎn)到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案