已知橢圓的左焦點為,右焦點為

(Ⅰ)設(shè)直線過點且垂直于橢圓的長軸,動直線垂直于點P,線段的垂直平分線交于點M,求點M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點,取曲線上不同于的點,以為直徑作圓與相交另外一點,求該圓的面積最小時點的坐標(biāo).

(Ⅰ)(Ⅱ).

解析試題分析:(Ⅰ) 利用拋物線的定義“到定點的距離等于到定直線的距離”來求;(Ⅱ)直線與拋物線相交,聯(lián)立消元,設(shè)點代入化簡,利用基本不等式求最值.
試題解析:(I)在線段的垂直平分線上,∴| MP | =" |" M |
故動點M到定直線的距離等于它到定點的距離
因此動點M的軌跡是以為準(zhǔn)線,為焦點的拋物線,
所以點M的軌跡的方程為  
(II)因為以O(shè)S為直徑的圓與相交于點R,
所以,即
設(shè),,則
,,
所以,即
,∴
,當(dāng)且僅當(dāng),即時等號成立
當(dāng)時,,圓的直徑,
這時點S的坐標(biāo)為
考點:拋物線的定義,向量的坐標(biāo)運算,基本不等式,坐標(biāo)表示等,考查了學(xué)生的綜合化簡計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別是、,下頂點為,線段的中點為為坐標(biāo)原點),如圖.若拋物線軸的交點為,且經(jīng)過、兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動點,過點作拋物線的切線交橢圓、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當(dāng)圓的半徑最長是,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個焦點和上下兩個頂點是一個邊長為2且∠F1B1F2的菱形的四個頂點.
(1)求橢圓的方程;
(2)過右焦點F2 ,斜率為)的直線與橢圓相交于兩點,A為橢圓的右頂點,直線分別交直線于點、,線段的中點為,記直線的斜率為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,點到兩點的距離之和等于4,設(shè)點的軌跡為,直線交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當(dāng)時,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點到定點的距離之和為.
(Ⅰ)求動點軌跡的方程;
(Ⅱ)設(shè),過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案