【題目】已知函數(shù).
(1)設(shè),判斷函數(shù)在上的單調(diào)性,并加以證明;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)設(shè)且時,的定義域和值域都是,求的最大值.
【答案】(1)單調(diào)遞增,證明見解析(2)且;(3)最大值為
【解析】
(1)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)在,上的單調(diào)性;(2),則不等式對恒成立,令,易證在,遞增,同理,遞減,求出函數(shù),與函數(shù),建立不等關(guān)系,解之即可求出的范圍;(3)由(1)及的定義域和值域都是,,則,是方程的兩個不相等的正數(shù)根,等價于方程有兩個不等的正數(shù)根,利用根與系數(shù)的關(guān)系即可求出的最大值.
(1)設(shè),則,
,,,,,
即,因此函數(shù)在,上的單調(diào)遞增.
(2),則不等式對恒成立,
即即不等式對恒成立,
令,易證在,遞增,同理在,遞減.
(1),(1),
且
(3)由(1)及的定義域和值域都是,得,,
因此,是方程的兩個不相等的正數(shù)根,
等價于方程有兩個不等的正數(shù)根,
即△且,
解得,
,
,
時,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,∥,,且,,是棱的中點(diǎn) .
(Ⅰ)求證:∥平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)是線段上的動點(diǎn),與平面所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個零點(diǎn).若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,求函數(shù)的最小值;
(3)已知,且任意有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),,對于定義在上的函數(shù),有下述命題:
①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于點(diǎn)對稱”;
②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于直線對稱”;
③“是的一個周期”的充要條件是“對任意的,都有”;
④“函數(shù)與的圖像關(guān)于軸對稱”的充要條件是“”
其中正確命題的序號是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求的值;
(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名.
①完成如下所示列聯(lián)表
技術(shù)工 | 非技術(shù)工 | 總計(jì) | |
月工資不高于平均數(shù) | |||
月工資高于平均數(shù) | |||
總計(jì) |
②則能否在犯錯誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種病毒感染性腹瀉在全世界范圍內(nèi)均有流行,感染對象主要是成人和學(xué)齡兒童,寒冷季節(jié)呈現(xiàn)高發(fā),據(jù)資料統(tǒng)計(jì),某市11月1日開始出現(xiàn)該病毒感染者,11月1日該市的病毒新感染者共有20人,此后每天的新感染者比前一天的新感染者增加50人,由于該市醫(yī)療部分采取措施,使該病毒的傳播速度得到控制,從第天起,每天的新感染者比前一天的新感染者減少30人,直到11月30日為止.
(1)設(shè)11月日當(dāng)天新感染人數(shù)為,求的通項(xiàng)公式(用表示);
(2)若到11月30日止,該市在這30日感染該病毒的患者共有8670人,11月幾日,該市感染此病毒的新患者人數(shù)最多?并求出這一天的新患者人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com