【題目】已知實(shí)數(shù),,對(duì)于定義在上的函數(shù),有下述命題:
①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱”;
②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于直線對(duì)稱”;
③“是的一個(gè)周期”的充要條件是“對(duì)任意的,都有”;
④“函數(shù)與的圖像關(guān)于軸對(duì)稱”的充要條件是“”
其中正確命題的序號(hào)是( )
A.①②B.②③C.①④D.③④
【答案】A
【解析】
①根據(jù)奇函數(shù)的定義判斷;②根據(jù)偶函數(shù)的定義判斷;③根據(jù)周期性的定義判斷;④根據(jù)對(duì)稱性定義判斷.
①:因?yàn)?/span>圖象是由向右平移個(gè)單位得到的,所以是奇函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,故正確;
②:由①同理可知:是偶函數(shù)圖像關(guān)于軸對(duì)稱函數(shù)的圖像關(guān)于直線對(duì)稱,故正確;
③:設(shè),是的一個(gè)周期,所以,所以不成立,故錯(cuò)誤;
④:設(shè),所以,,此時(shí) 與的圖象關(guān)于軸對(duì)稱,但是不一定成立,故錯(cuò)誤;
所以正確命題序號(hào)為:①②.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,,則表格中共有5個(gè)1的填表方法種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:(),左、右焦點(diǎn)分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn)
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)表示不大于實(shí)數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個(gè)解,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=.對(duì)于集合A中的任意元素和,記
M()=.
(Ⅰ)當(dāng)n=3時(shí),若, ,求M()和M()的值;
(Ⅱ)當(dāng)n=4時(shí),設(shè)B是A的子集,且滿足:對(duì)于B中的任意元素,當(dāng)相同時(shí),M()是奇數(shù);當(dāng)不同時(shí),M()是偶數(shù).求集合B中元素個(gè)數(shù)的最大值;
(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對(duì)于B中的任意兩個(gè)不同的元素,
M()=0.寫出一個(gè)集合B,使其元素個(gè)數(shù)最多,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是同時(shí)符合以下性質(zhì)的函數(shù)f(x)組成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數(shù).
(1)判斷函數(shù)f1(x)=2-和f2(x)=1+3· (x≥0)是否屬于集合A,并簡(jiǎn)要說明理由;
(2)把(1)中你認(rèn)為是集合A中的一個(gè)函數(shù)記為g(x),若不等式g(x)+g(x+2)≤k對(duì)任意的x≥0總成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認(rèn)為正確的序號(hào)全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計(jì)),如圖所示,已知,(單位:米),要求圓M與分別相切于點(diǎn)B,D,圓與分別相切于點(diǎn)C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價(jià)分別為每米0.8千元與每米0.9千元,則當(dāng)多大時(shí),總造價(jià)最低?最低總造價(jià)是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com